Matchings in general graphs

Lecture 17

For $k \geq 1$, a k-factor in a graph G is a spanning k-regular subgraph of G. So, a 1 -factor is simply a p.m.

Theorem 3.7 (Tutte, 1947): A graph G has a p.m. if and only if

$$
\begin{equation*}
o(G-S) \leq|S| \quad \forall S \subseteq V(G) \tag{1}
\end{equation*}
$$

Proof. The "only if" part is easy. We prove the "if" part. If this part does not hold for n-vertex simple graphs, then there is an n-vertex simple graph G satisfying (1) and no p.m. with the most edges.

Since adding an edge to G preserves (1), any such adding leads to a graph with a p.m.
Let U be the set of vertices in G of degree $n-1$.

For $k \geq 1$, a k-factor in a graph G is a spanning k-regular subgraph of G. So, a 1 -factor is simply a p.m.

Theorem 3.7 (Tutte, 1947): A graph G has a p.m. if and only if

$$
\begin{equation*}
o(G-S) \leq|S| \quad \forall S \subseteq V(G) \tag{1}
\end{equation*}
$$

Proof. The "only if" part is easy. We prove the "if" part. If this part does not hold for n-vertex simple graphs, then there is an n-vertex simple graph G satisfying (1) and no p.m. with the most edges.

Since adding an edge to G preserves (1), any such adding leads to a graph with a p.m.
Let U be the set of vertices in G of degree $n-1$.
Case 1: All components of $G-U$ are complete graphs. Since by (1), o(G-U) $\mathrm{O}|U|$, we construct a p.m. by hand.

Case 2: Some component G^{\prime} of $G-U$ is not a complete graph. Then G^{\prime} contains an induced path P_{3}, say with vertices x, y and z (in this order).

Since $y \notin U$, there is $w \in V(G)-N(y)$.

Case 2: Some component G^{\prime} of $G-U$ is not a complete graph. Then G^{\prime} contains an induced path P_{3}, say with vertices x, y and z (in this order).

Since $y \notin U$, there is $w \in V(G)-N(y)$.
Let $e_{1}=x z, e_{2}=w y$. Let $G_{i}=G+e_{i}$. Then for $i=1,2, G_{i}$ contains a p.m. M_{i}.
Furthermore, $e_{1} \in M_{1}-M_{2}$ and $e_{2} \in M_{2}-M_{1}$.

Case 2: Some component G^{\prime} of $G-U$ is not a complete graph. Then G^{\prime} contains an induced path P_{3}, say with vertices x, y and z (in this order).

Since $y \notin U$, there is $w \in V(G)-N(y)$.
Let $e_{1}=x z, e_{2}=w y$. Let $G_{i}=G+e_{i}$. Then for $i=1,2, G_{i}$ contains a p.m. M_{i}.
Furthermore, $e_{1} \in M_{1}-M_{2}$ and $e_{2} \in M_{2}-M_{1}$.
Consider the graph F with edge set $M_{1} \cup M_{2}$. By definition, $\Delta(F)=2$, and every component is either an edge (belonging to both, M_{1} and M_{2}) or a cycle whose edges alternately belong to M_{1} and M_{2}.

Let C_{i} be the cycle in F containing e_{i}.

Case 2.1: $C_{2} \neq C_{1}$. Then we define a new perfect matching in F :
$M=\left(M_{1}-\left(M_{1} \cap E\left(C_{1}\right)\right)\right) \cup\left(M_{2} \cap E\left(C_{1}\right)\right)$.
This M contains neither e_{1} nor e_{2}. Hence it is a p.m. in G, a contradiction.

Case 2.1: $C_{2} \neq C_{1}$. Then we define a new perfect matching in F :
$M=\left(M_{1}-\left(M_{1} \cap E\left(C_{1}\right)\right)\right) \cup\left(M_{2} \cap E\left(C_{1}\right)\right)$.
This M contains neither e_{1} nor e_{2}. Hence it is a p.m. in G, a contradiction.

Case 2.2: $C_{2}=C_{1}$.

Let Q_{1} be the x, y-path in $C_{1}-x z$ and Q_{2} be the z, y-path in $C_{1}-x z$

By symmetry, we may assume that $w y \in E\left(Q_{1}\right)$. Let M_{0} be obtained from M_{1} by deleting the edges in $M_{1} \cap Q_{2}$ and adding edge $x y$ and all edges in $M_{2} \cap Q_{2}$.

Then M_{0} covers all vertices of G and contains neither e_{1} nor e_{2}. This contradiction proves the theorem.

Corollary 3.8 (Petersen, 1891): Every 3-regular graph with no cut-edges has a p.m.

Proof. Suppose a 3-regular graph G with no cut-edges has no p.m.

Then by Theorem 3.7, there is $S \subseteq V(G)$ s.t. $o(G-S)>|S|$.

Corollary 3.8 (Petersen, 1891): Every 3-regular graph with no cut-edges has a p.m.

Proof. Suppose a 3-regular graph G with no cut-edges has no p.m.

Then by Theorem 3.7, there is $S \subseteq V(G)$ s.t. $o(G-S)>|S|$.
Suppose $S=\left\{v_{1}, \ldots, v_{s}\right\}$ and odd components of $G-S$ are H_{1}, \ldots, H_{t}, where $t \geq s+1$. We claim that for each $1 \leq j \leq t$, the number of edges between H_{j} and S is odd. $(*)$

Corollary 3.8 (Petersen, 1891): Every 3-regular graph with no cut-edges has a p.m.

Proof. Suppose a 3-regular graph G with no cut-edges has no p.m.

Then by Theorem 3.7, there is $S \subseteq V(G)$ s.t. $o(G-S)>|S|$.
Suppose $S=\left\{v_{1}, \ldots, v_{s}\right\}$ and odd components of $G-S$ are H_{1}, \ldots, H_{t}, where $t \geq s+1$. We claim that for each $1 \leq j \leq t$, the number of edges between H_{j} and S is odd. (*)

Indeed, $\sum_{v \in V\left(H_{j}\right)} d(v)=3\left|V\left(H_{j}\right)\right|$ and hence is odd. Every edge inside H_{j} contributes 2 to $\sum_{v \in V\left(H_{j}\right)} d(v)$, and each edge between S and H_{j} contributes 1 . This proves ($*$).

Since G has no cut edges, by ($*$) for each $1 \leq j \leq t$, the number of edges between H_{j} and S is at least 3 . (**)

By (**),

$$
|E(S, V(G)-S)| \geq 3 t .
$$

On the other hand,

$$
|E(S, V(G)-S)| \leq \sum_{w \in S} d(w)=3 s<3 t
$$

This contradiction proves the corollary.

Theorem 3.9 (Petersen, 1891): For every $k \geq 1$, every $2 k$-regular graph has a 2 -factor.

Proof. It is enough to prove the theorem for connected graphs. So, suppose G is a connected $2 k$-regular graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Then G has an Eulerian circuit C. Let e_{1}, \ldots, e_{m} be the (directed) edges of C.

Theorem 3.9 (Petersen, 1891): For every $k \geq 1$, every $2 k$-regular graph has a 2 -factor.

Proof. It is enough to prove the theorem for connected graphs. So, suppose G is a connected $2 k$-regular graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Then G has an Eulerian circuit C. Let e_{1}, \ldots, e_{m} be the (directed) edges of C.

We construct an auxiliary bigraph H as follows. The parts of H are V and $V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$.
For every e_{j} in C, if e_{j} leads from v_{i} to v_{h}, we add edge $v_{i} v_{h}^{\prime}$ to $E(H)$.

Since exactly k edges of C enter and leave each vertex in G, H is k-regular.

Theorem 3.9 (Petersen, 1891): For every $k \geq 1$, every $2 k$-regular graph has a 2 -factor.

Proof. It is enough to prove the theorem for connected graphs. So, suppose G is a connected $2 k$-regular graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Then G has an Eulerian circuit C. Let e_{1}, \ldots, e_{m} be the (directed) edges of C.

We construct an auxiliary bigraph H as follows. The parts of H are V and $V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$.
For every e_{j} in C, if e_{j} leads from v_{i} to v_{h}, we add edge $v_{i} v_{h}^{\prime}$ to $E(H)$.

Since exactly k edges of C enter and leave each vertex in G, H is k-regular.

So by Marriage Theorem, H has a p.m. M.
The edges of M form a 2 -factor in G.

