
Matchings in general graphs

Lecture 17



For k ≥ 1, a k -factor in a graph G is a spanning k -regular
subgraph of G. So, a 1-factor is simply a p.m.

Theorem 3.7 (Tutte, 1947): A graph G has a p.m. if and only if

o(G − S) ≤ |S| ∀S ⊆ V (G). (1)

Proof. The ”only if” part is easy. We prove the ”if” part.
If this part does not hold for n-vertex simple graphs, then there
is an n-vertex simple graph G satisfying (1) and no p.m. with
the most edges.

Since adding an edge to G preserves (1), any such adding
leads to a graph with a p.m.
Let U be the set of vertices in G of degree n − 1.

Case 1: All components of G − U are complete graphs. Since
by (1), o(G − U) ≤ |U|, we construct a p.m. by hand.
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Case 2: Some component G′ of G − U is not a complete graph.
Then G′ contains an induced path P3, say with vertices x , y and
z (in this order).

Since y /∈ U, there is w ∈ V (G)− N(y).

Let e1 = xz, e2 = wy . Let Gi = G + ei . Then for i = 1,2, Gi
contains a p.m. Mi .
Furthermore, e1 ∈ M1 − M2 and e2 ∈ M2 − M1.

Consider the graph F with edge set M1 ∪ M2. By definition,
∆(F ) = 2, and every component is either an edge (belonging to
both, M1 and M2) or a cycle whose edges alternately belong to
M1 and M2.

Let Ci be the cycle in F containing ei .
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Case 2.1: C2 ̸= C1. Then we define a new perfect matching in
F :
M = (M1 − (M1 ∩ E(C1))) ∪ (M2 ∩ E(C1)).

This M contains neither e1 nor e2. Hence it is a p.m. in G, a
contradiction.

Case 2.2: C2 = C1.



Case 2.1: C2 ̸= C1. Then we define a new perfect matching in
F :
M = (M1 − (M1 ∩ E(C1))) ∪ (M2 ∩ E(C1)).

This M contains neither e1 nor e2. Hence it is a p.m. in G, a
contradiction.

Case 2.2: C2 = C1.



Let Q1 be the x , y -path in C1 − xz and Q2 be the z, y -path in
C1 − xz

By symmetry, we may assume that wy ∈ E(Q1). Let M0 be
obtained from M1 by deleting the edges in M1 ∩ Q2 and adding
edge xy and all edges in M2 ∩ Q2.

Then M0 covers all vertices of G and contains neither e1 nor e2.
This contradiction proves the theorem.



Corollary 3.8 (Petersen, 1891): Every 3-regular graph with no
cut-edges has a p.m.

Proof. Suppose a 3-regular graph G with no cut-edges has no
p.m.
Then by Theorem 3.7, there is S ⊆ V (G) s.t. o(G − S) > |S|.

Suppose S = {v1, . . . , vs} and odd components of G − S are
H1, . . . ,Ht , where t ≥ s + 1. We claim that for each 1 ≤ j ≤ t ,

the number of edges between Hj and S is odd. (∗)

Indeed,
∑

v∈V (Hj )
d(v) = 3|V (Hj)| and hence is odd. Every

edge inside Hj contributes 2 to
∑

v∈V (Hj )
d(v), and each edge

between S and Hj contributes 1. This proves (∗).

Since G has no cut edges, by (∗) for each 1 ≤ j ≤ t ,

the number of edges between Hj and S is at least 3. (∗∗)
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By (∗∗),
|E(S,V (G)− S)| ≥ 3t .

On the other hand,

|E(S,V (G)− S)| ≤
∑
w∈S

d(w) = 3s < 3t .

This contradiction proves the corollary.



Theorem 3.9 (Petersen, 1891): For every k ≥ 1, every
2k -regular graph has a 2-factor.

Proof. It is enough to prove the theorem for connected graphs.
So, suppose G is a connected 2k -regular graph with vertex set
V = {v1, . . . , vn}. Then G has an Eulerian circuit C. Let
e1, . . . ,em be the (directed) edges of C.

We construct an auxiliary bigraph H as follows. The parts of H
are V and V ′ = {v ′

1, . . . , v
′
n}.

For every ej in C, if ej leads from vi to vh, we add edge viv ′
h to

E(H).

Since exactly k edges of C enter and leave each vertex in G, H
is k -regular.

So by Marriage Theorem, H has a p.m. M.

The edges of M form a 2-factor in G.
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