Matchings in general graphs

Lecture 17

For $k \ge 1$, a *k*-factor in a graph *G* is a spanning *k*-regular subgraph of *G*. So, a 1-factor is simply a p.m.

Theorem 3.7 (Tutte, 1947): A graph G has a p.m. if and only if

$$o(G-S) \leq |S| \quad \forall S \subseteq V(G).$$
 (1)

(ロ) (同) (三) (三) (三) (○) (○)

Proof. The "only if" part is easy. We prove the "if" part. If this part does not hold for *n*-vertex simple graphs, then there is an *n*-vertex simple graph *G* satisfying (1) and no p.m. with the most edges.

Since adding an edge to G preserves (1), any such adding leads to a graph with a p.m.

Let *U* be the set of vertices in *G* of degree n - 1.

For $k \ge 1$, a *k*-factor in a graph *G* is a spanning *k*-regular subgraph of *G*. So, a 1-factor is simply a p.m.

Theorem 3.7 (Tutte, 1947): A graph G has a p.m. if and only if

$$o(G-S) \leq |S| \quad \forall S \subseteq V(G).$$
 (1)

Proof. The "only if" part is easy. We prove the "if" part. If this part does not hold for *n*-vertex simple graphs, then there is an *n*-vertex simple graph *G* satisfying (1) and no p.m. with the most edges.

Since adding an edge to G preserves (1), any such adding leads to a graph with a p.m.

Let *U* be the set of vertices in *G* of degree n - 1.

Case 1: All components of G - U are complete graphs. Since by (1), $o(G - U) \le |U|$, we construct a p.m. by hand.

Case 2: Some component G' of G - U is not a complete graph. Then G' contains an induced path P_3 , say with vertices x, y and z (in this order).

(ロ) (同) (三) (三) (三) (○) (○)

Since $y \notin U$, there is $w \in V(G) - N(y)$.

Case 2: Some component G' of G - U is not a complete graph. Then G' contains an induced path P_3 , say with vertices x, y and z (in this order).

Since $y \notin U$, there is $w \in V(G) - N(y)$.

Let $e_1 = xz$, $e_2 = wy$. Let $G_i = G + e_i$. Then for $i = 1, 2, G_i$ contains a p.m. M_i . Furthermore, $e_1 \in M_1 - M_2$ and $e_2 \in M_2 - M_1$.

(ロ) (同) (三) (三) (三) (○) (○)

Case 2: Some component G' of G - U is not a complete graph. Then G' contains an induced path P_3 , say with vertices x, y and z (in this order).

Since $y \notin U$, there is $w \in V(G) - N(y)$.

Let $e_1 = xz$, $e_2 = wy$. Let $G_i = G + e_i$. Then for $i = 1, 2, G_i$ contains a p.m. M_i . Furthermore, $e_1 \in M_1 - M_2$ and $e_2 \in M_2 - M_1$.

Consider the graph *F* with edge set $M_1 \cup M_2$. By definition, $\Delta(F) = 2$, and every component is either an edge (belonging to both, M_1 and M_2) or a cycle whose edges alternately belong to M_1 and M_2 .

(ロ) (同) (三) (三) (三) (○) (○)

Let C_i be the cycle in F containing e_i .

Case 2.1: $C_2 \neq C_1$. Then we define a new perfect matching in *F*:

 $M = (M_1 - (M_1 \cap E(C_1))) \cup (M_2 \cap E(C_1)).$

This *M* contains neither e_1 nor e_2 . Hence it is a p.m. in *G*, a contradiction.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Case 2.1: $C_2 \neq C_1$. Then we define a new perfect matching in *F*:

 $M = (M_1 - (M_1 \cap E(C_1))) \cup (M_2 \cap E(C_1)).$

This *M* contains neither e_1 nor e_2 . Hence it is a p.m. in *G*, a contradiction.

Case 2.2: $C_2 = C_1$.

Let Q_1 be the *x*, *y*-path in $C_1 - xz$ and Q_2 be the *z*, *y*-path in $C_1 - xz$

By symmetry, we may assume that $wy \in E(Q_1)$. Let M_0 be obtained from M_1 by deleting the edges in $M_1 \cap Q_2$ and adding edge xy and all edges in $M_2 \cap Q_2$.

Then M_0 covers all vertices of G and contains neither e_1 nor e_2 . This contradiction proves the theorem.

(日) (日) (日) (日) (日) (日) (日)

Corollary 3.8 (Petersen, 1891): Every 3-regular graph with no cut-edges has a p.m.

Proof. Suppose a 3-regular graph *G* with no cut-edges has no p.m.

Then by Theorem 3.7, there is $S \subseteq V(G)$ s.t. o(G - S) > |S|.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Corollary 3.8 (Petersen, 1891): Every 3-regular graph with no cut-edges has a p.m.

Proof. Suppose a 3-regular graph *G* with no cut-edges has no p.m.

Then by Theorem 3.7, there is $S \subseteq V(G)$ s.t. o(G - S) > |S|.

Suppose $S = \{v_1, ..., v_s\}$ and odd components of G - S are $H_1, ..., H_t$, where $t \ge s + 1$. We claim that for each $1 \le j \le t$,

the number of edges between H_i and S is odd. (*)

Corollary 3.8 (Petersen, 1891): Every 3-regular graph with no cut-edges has a p.m.

Proof. Suppose a 3-regular graph *G* with no cut-edges has no p.m.

Then by Theorem 3.7, there is $S \subseteq V(G)$ s.t. o(G - S) > |S|.

Suppose $S = \{v_1, ..., v_s\}$ and odd components of G - S are $H_1, ..., H_t$, where $t \ge s + 1$. We claim that for each $1 \le j \le t$,

the number of edges between H_i and S is odd. (*)

Indeed, $\sum_{v \in V(H_j)} d(v) = 3|V(H_j)|$ and hence is odd. Every edge inside H_j contributes 2 to $\sum_{v \in V(H_j)} d(v)$, and each edge between *S* and H_j contributes 1. This proves (*).

Since *G* has no cut edges, by (*) for each $1 \le j \le t$,

the number of edges between H_i and S is at least 3. (**)

 $|E(S, V(G) - S)| \geq 3t.$

On the other hand,

$$|E(S, V(G) - S)| \leq \sum_{w \in S} d(w) = 3s < 3t.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

This contradiction proves the corollary.

Theorem 3.9 (Petersen, 1891): For every $k \ge 1$, every 2k-regular graph has a 2-factor.

Proof. It is enough to prove the theorem for connected graphs. So, suppose *G* is a connected 2k-regular graph with vertex set $V = \{v_1, \ldots, v_n\}$. Then *G* has an Eulerian circuit *C*. Let e_1, \ldots, e_m be the (directed) edges of *C*.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem 3.9 (Petersen, 1891): For every $k \ge 1$, every 2k-regular graph has a 2-factor.

Proof. It is enough to prove the theorem for connected graphs. So, suppose *G* is a connected 2k-regular graph with vertex set $V = \{v_1, \ldots, v_n\}$. Then *G* has an Eulerian circuit *C*. Let e_1, \ldots, e_m be the (directed) edges of *C*.

We construct an auxiliary bigraph *H* as follows. The parts of *H* are *V* and $V' = \{v'_1, \ldots, v'_n\}$. For every e_j in *C*, if e_j leads from v_i to v_h , we add edge $v_iv'_h$ to E(H).

Since exactly k edges of C enter and leave each vertex in G, H is k-regular.

Theorem 3.9 (Petersen, 1891): For every $k \ge 1$, every 2k-regular graph has a 2-factor.

Proof. It is enough to prove the theorem for connected graphs. So, suppose *G* is a connected 2k-regular graph with vertex set $V = \{v_1, \ldots, v_n\}$. Then *G* has an Eulerian circuit *C*. Let e_1, \ldots, e_m be the (directed) edges of *C*.

We construct an auxiliary bigraph *H* as follows. The parts of *H* are *V* and $V' = \{v'_1, \ldots, v'_n\}$. For every e_j in *C*, if e_j leads from v_i to v_h , we add edge $v_iv'_h$ to E(H).

Since exactly k edges of C enter and leave each vertex in G, H is k-regular.

So by Marriage Theorem, *H* has a p.m. *M*.

The edges of *M* form a 2-factor in *G*.