Matchings in general graphs, II

Lecture 18

Theorem 3.7 (Tutte, 1947): A graph G has a p.m. if and only if

$$
\begin{equation*}
o(G-S) \leq|S| \quad \forall S \subseteq V(G) \tag{1}
\end{equation*}
$$

Theorem 3.8 (Petersen, 1891): Every 3-regular graph with no cut-edges has a p.m.

Theorem 3.9 (Petersen, 1891): For every $k \geq 1$, every $2 k$-regular graph has a 2 -factor.

Proof. It is enough to prove the theorem for connected graphs. So, suppose G is a connected $2 k$-regular graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Then G has an Eulerian circuit C. Let e_{1}, \ldots, e_{m} be the (directed) edges of C.

Theorem 3.9 (Petersen, 1891): For every $k \geq 1$, every $2 k$-regular graph has a 2 -factor.

Proof. It is enough to prove the theorem for connected graphs. So, suppose G is a connected $2 k$-regular graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Then G has an Eulerian circuit C. Let e_{1}, \ldots, e_{m} be the (directed) edges of C.

We construct an auxiliary bigraph H as follows. The parts of H are V and $V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$.
For every e_{j} in C, if e_{j} leads from v_{i} to v_{h}, we add edge $v_{i} v_{h}^{\prime}$ to $E(H)$.

Since exactly k edges of C enter and leave each vertex in G, H is k-regular.

Theorem 3.9 (Petersen, 1891): For every $k \geq 1$, every $2 k$-regular graph has a 2 -factor.

Proof. It is enough to prove the theorem for connected graphs. So, suppose G is a connected $2 k$-regular graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Then G has an Eulerian circuit C. Let e_{1}, \ldots, e_{m} be the (directed) edges of C.

We construct an auxiliary bigraph H as follows. The parts of H are V and $V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$.
For every e_{j} in C, if e_{j} leads from v_{i} to v_{h}, we add edge $v_{i} v_{h}^{\prime}$ to $E(H)$.

Since exactly k edges of C enter and leave each vertex in G, H is k-regular.

So by Marriage Theorem, H has a p.m. M.
The edges of M form a 2 -factor in G.

Theorem 3.10 (Berge-Tutte Formula, 1958): For every graph G,

$$
\begin{equation*}
|V(G)|-2 \alpha^{\prime}(G)=\max _{S \subseteq V(G)}\{o(G-S)-|S|\} . \tag{2}
\end{equation*}
$$

Proof. We will prove \geq and \leq.
Part \geq. Let M a matching in G of size $\alpha^{\prime}(G)$. Given any
$S \subseteq V(G), M$ does not cover a vertex in at least $o(G-S)-|S|$ odd components of $G-S$. This yields

$$
|V(G)|-2 \alpha^{\prime}(G) \geq o(G-S)-|S|
$$

This proves our part.

Part \leq.

Let $d=\max _{S \subseteq V(G)}\{0(G-S)-|S|\}$. Trying $S=\emptyset$ yields $d \geq 0$. Moreover, by Tutte's Theorem, if $d=0$, then we are done. So suppose $d \geq 1$.
Fix $S_{0} \subseteq V(G)$ such that $d=o\left(G-S_{0}\right)-\left|S_{0}\right|$.
Let H be obtained from a copy of G and a disjoint from it copy of K_{d} with vertex set D by adding all edges with one end in $V(G)$ and one end in D.

Part \leq.

Let $d=\max _{S \subseteq V(G)}\{0(G-S)-|S|\}$. Trying $S=\emptyset$ yields $d \geq 0$. Moreover, by Tutte's Theorem, if $d=0$, then we are done. So suppose $d \geq 1$.
Fix $S_{0} \subseteq V(G)$ such that $d=o\left(G-S_{0}\right)-\left|S_{0}\right|$.
Let H be obtained from a copy of G and a disjoint from it copy of K_{d} with vertex set D by adding all edges with one end in $V(G)$ and one end in D.

Since the parity of $d=o\left(G-S_{0}\right)-\left|S_{0}\right|$ is the same as of $o\left(G-S_{0}\right)+\left|S_{0}\right|$, which in turn is the same as the parity of n,

$$
|V(H)|=n+d \quad \text { is even. }
$$

Part \leq.

Let $d=\max _{S \subseteq V(G)}\{0(G-S)-|S|\}$. Trying $S=\emptyset$ yields $d \geq 0$. Moreover, by Tutte's Theorem, if $d=0$, then we are done. So suppose $d \geq 1$.
Fix $S_{0} \subseteq V(G)$ such that $d=o\left(G-S_{0}\right)-\left|S_{0}\right|$.
Let H be obtained from a copy of G and a disjoint from it copy of K_{d} with vertex set D by adding all edges with one end in $V(G)$ and one end in D.

Since the parity of $d=o\left(G-S_{0}\right)-\left|S_{0}\right|$ is the same as of $o\left(G-S_{0}\right)+\left|S_{0}\right|$, which in turn is the same as the parity of n,

$$
|V(H)|=n+d \quad \text { is even. }
$$

We now claim that

Indeed, suppose H has no p.m. Then by Tutte's Theorem, there is $T \subseteq V(H)$ s.t.

$$
\begin{equation*}
o(H-T)-|T| \geq 1 \tag{4}
\end{equation*}
$$

Since $d \geq 1, H$ is connected. This and the fact that $|V(H)|$ is even imply that $T \neq \emptyset$.

Indeed, suppose H has no p.m. Then by Tutte's Theorem, there is $T \subseteq V(H)$ s.t.

$$
\begin{equation*}
o(H-T)-|T| \geq 1 \tag{4}
\end{equation*}
$$

Since $d \geq 1, H$ is connected. This and the fact that $|V(H)|$ is even imply that $T \neq \emptyset$.

If there is $w \in D-T$, then $H-T$ is connected, and hence $o(H-T) \leq 1$. This contradicts (4). Thus $D \subset T$. It follows that

$$
o(G-(T-D))=o(H-T) \geq|T|+1=|T-D|+d+1 .
$$

In other words, $o(G-(T-D))-|T-D| \geq d+1$, contradicting the definition of d.

Main theorems in Chapter 3:

1. Hall's Theorem on matchings in bipartite graphs (Theorem 3.2).
2. König-Egerváry Theorem on vertex covers (Theorem 3.4).

Main theorems in Chapter 3:

1. Hall's Theorem on matchings in bipartite graphs (Theorem 3.2).
2. König-Egerváry Theorem on vertex covers (Theorem 3.4).
3. Tutte's Theorem on p.m. in general graphs (Theorem 3.7).
4. Petersen's Theorems (Corollary 3.8 and Theorem 3.9).

Main theorems in Chapter 3:

1. Hall's Theorem on matchings in bipartite graphs (Theorem 3.2).
2. König-Egerváry Theorem on vertex covers (Theorem 3.4).
3. Tutte's Theorem on p.m. in general graphs (Theorem 3.7).
4. Petersen's Theorems (Corollary 3.8 and Theorem 3.9).
5. Berge-Tutte Formula (Theorem 3.10).
6. Gale-Shapley Algorithm and its proof.
