Matchings in general graphs, III

Lecture 19

Theorem 3.7 (Tutte, 1947): A graph G has a p.m. if and only if

$$
\begin{equation*}
o(G-S) \leq|S| \quad \forall S \subseteq V(G) \tag{1}
\end{equation*}
$$

Theorem 3.8 (Petersen, 1891): Every 3-regular graph with no cut-edges has a p.m.

Theorem 3.9 (Petersen, 1891): For every $k \geq 1$, every $2 k$-regular graph has a 2 -factor.

Corollary (Petersen, 1891): For every $k \geq 1$, the edges of every $2 k$-regular graph partition into $k 2$-factors.

Theorem 3.10 (Berge-Tutte Formula, 1958): For every graph G,

$$
\begin{equation*}
|V(G)|-2 \alpha^{\prime}(G)=\max _{S \subseteq V(G)}\{o(G-S)-|S|\} . \tag{2}
\end{equation*}
$$

Proof. We will prove \geq and \leq.
Part \geq. Let M a matching in G of size $\alpha^{\prime}(G)$. Given any
$S \subseteq V(G), M$ does not cover a vertex in at least $o(G-S)-|S|$ odd components of $G-S$. This yields

$$
|V(G)|-2 \alpha^{\prime}(G) \geq o(G-S)-|S|
$$

This proves our part.

Part \leq.

Let $d=\max _{S \subseteq V(G)}\{0(G-S)-|S|\}$. Trying $S=\emptyset$ yields $d \geq 0$. Moreover, by Tutte's Theorem, if $d=0$, then we are done. So suppose $d \geq 1$.
Fix $S_{0} \subseteq V(G)$ such that $d=o\left(G-S_{0}\right)-\left|S_{0}\right|$.
Let H be obtained from a copy of G and a disjoint from it copy of K_{d} with vertex set D by adding all edges with one end in $V(G)$ and one end in D.

Part \leq.

Let $d=\max _{S \subseteq V(G)}\{0(G-S)-|S|\}$. Trying $S=\emptyset$ yields $d \geq 0$. Moreover, by Tutte's Theorem, if $d=0$, then we are done. So suppose $d \geq 1$.
Fix $S_{0} \subseteq V(G)$ such that $d=o\left(G-S_{0}\right)-\left|S_{0}\right|$.
Let H be obtained from a copy of G and a disjoint from it copy of K_{d} with vertex set D by adding all edges with one end in $V(G)$ and one end in D.

Since the parity of $d=o\left(G-S_{0}\right)-\left|S_{0}\right|$ is the same as of $o\left(G-S_{0}\right)+\left|S_{0}\right|$, which in turn is the same as the parity of n,

$$
|V(H)|=n+d \quad \text { is even. }
$$

Part \leq.

Let $d=\max _{S \subseteq V(G)}\{0(G-S)-|S|\}$. Trying $S=\emptyset$ yields $d \geq 0$. Moreover, by Tutte's Theorem, if $d=0$, then we are done. So suppose $d \geq 1$.
Fix $S_{0} \subseteq V(G)$ such that $d=o\left(G-S_{0}\right)-\left|S_{0}\right|$.
Let H be obtained from a copy of G and a disjoint from it copy of K_{d} with vertex set D by adding all edges with one end in $V(G)$ and one end in D.

Since the parity of $d=o\left(G-S_{0}\right)-\left|S_{0}\right|$ is the same as of $o\left(G-S_{0}\right)+\left|S_{0}\right|$, which in turn is the same as the parity of n,

$$
|V(H)|=n+d \quad \text { is even. }
$$

We now claim that

Indeed, suppose H has no p.m. Then by Tutte's Theorem, there is $T \subseteq V(H)$ s.t.

$$
\begin{equation*}
o(H-T)-|T| \geq 1 \tag{4}
\end{equation*}
$$

Since $d \geq 1, H$ is connected. This and the fact that $|V(H)|$ is even imply that $T \neq \emptyset$.

Indeed, suppose H has no p.m. Then by Tutte's Theorem, there is $T \subseteq V(H)$ s.t.

$$
\begin{equation*}
o(H-T)-|T| \geq 1 \tag{4}
\end{equation*}
$$

Since $d \geq 1, H$ is connected. This and the fact that $|V(H)|$ is even imply that $T \neq \emptyset$.

If there is $w \in D-T$, then $H-T$ is connected, and hence $o(H-T) \leq 1$. This contradicts (4). Thus $D \subset T$. It follows that

$$
o(G-(T-D))=o(H-T) \geq|T|+1=|T-D|+d+1
$$

In other words, $o(G-(T-D))-|T-D| \geq d+1$, contradicting the definition of d.

Corollary 3.11: If a graph G with an even number of vertices has no p.m., then there is an $S \subset V(G)$ s.t. $o(G-S)-|S| \geq 2$.

Main theorems in Chapter 3:

1. Hall's Theorem on matchings in bipartite graphs (Theorem 3.2).
2. König-Egerváry Theorem on vertex covers (Theorem 3.4).

Main theorems in Chapter 3:

1. Hall's Theorem on matchings in bipartite graphs (Theorem 3.2).
2. König-Egerváry Theorem on vertex covers (Theorem 3.4).
3. Tutte's Theorem on p.m. in general graphs (Theorem 3.7).
4. Petersen's Theorems (Theorems 3.8 and 3.9).

Main theorems in Chapter 3:

1. Hall's Theorem on matchings in bipartite graphs (Theorem 3.2).
2. König-Egerváry Theorem on vertex covers (Theorem 3.4).
3. Tutte's Theorem on p.m. in general graphs (Theorem 3.7).
4. Petersen's Theorems (Theorems 3.8 and 3.9).
5. Berge-Tutte Formula (Theorem 3.10).
6. Gale-Shapley Algorithm and its proof.

In many applications of Graph Theory one needs a measure of how vulnerable for a given connected graph is its connectedness, i.e. how difficult is to make a graph disconnected. For example, for large n, the graph K_{n} seems more "reliable" than the graph P_{n}.

We will study the most popular measures.

In many applications of Graph Theory one needs a measure of how vulnerable for a given connected graph is its connectedness, i.e. how difficult is to make a graph disconnected. For example, for large n, the graph K_{n} seems more "reliable" than the graph P_{n}.

We will study the most popular measures.
A separating set (vertex cut) in a graph G is an $S \subset V(G)$ s.t. $G-S$ is disconnected.

Observe that K_{n} has no separating sets.

In many applications of Graph Theory one needs a measure of how vulnerable for a given connected graph is its connectedness, i.e. how difficult is to make a graph disconnected. For example, for large n, the graph K_{n} seems more "reliable" than the graph P_{n}.

We will study the most popular measures.
A separating set (vertex cut) in a graph G is an $S \subset V(G)$ s.t. $G-S$ is disconnected.

Observe that K_{n} has no separating sets.
The connectivity of $G, \kappa(G)$, is the minimum k s.t. for some $S \subseteq V(G)$ with $|S|=k$, graph $G-S$ either is disconnected or has at most one vertex.

Note that with this definition, $\kappa\left(K_{1}\right)=0$. (Also for each 1-vertex graph.)

Lemma 4.1: For every connected n-vertex graph $G, \kappa(G)$ is the minimum of $n-1$ and the size of a minimum separating set .

Proof. If an n-vertex graph G has a separating set S, then $G-S$ has at least two vertices. Hence in this case the connectivity is the minimum size of a separating set.

If our G has no separating sets, then each vertex is adjacent to each other vertex, and the connectivity is $n-1$.

Connectivity of K_{n} and $K_{n, m}$.

Lemma 4.1: For every connected n-vertex graph $G, \kappa(G)$ is the minimum of $n-1$ and the size of a minimum separating set .

Proof. If an n-vertex graph G has a separating set S, then $G-S$ has at least two vertices. Hence in this case the connectivity is the minimum size of a separating set.

If our G has no separating sets, then each vertex is adjacent to each other vertex, and the connectivity is $n-1$.

Connectivity of K_{n} and $K_{n, m}$.
A graph G is k-connected if $\kappa(G) \geq k$.
In particular, each $(k+1)$-connected graph is also k-connected.

A disconnecting set of edges in a graph G is a $T \subset E(G)$ s.t. $G-T$ is disconnected.

For a graph G with at least two vertices, the edge connectivity of $G, \kappa^{\prime}(G)$, is the cardinality of a minimum disconnecting set. The edge connectivity of each 1 -vertex graph is defined to be 0 . In particular, $\kappa^{\prime}\left(K_{1}\right)=0$.

A disconnecting set of edges in a graph G is a $T \subset E(G)$ s.t. $G-T$ is disconnected.

For a graph G with at least two vertices, the edge connectivity of $G, \kappa^{\prime}(G)$, is the cardinality of a minimum disconnecting set. The edge connectivity of each 1 -vertex graph is defined to be 0 . In particular, $\kappa^{\prime}\left(K_{1}\right)=0$.

An edge cut in a graph G is the set of edges of G connecting the vertices of some $S \subset V(G)$ with $\bar{S}=V(G)-S$.

For $S \subset V(G)$ we denote by $E(S, \bar{S})$ the set of edges of G connecting S with \bar{S}.

Observation: If T is a disconnecting set in G with $|T|=\kappa^{\prime}(G)$, then T is an edge cut.
(Otherwise, T would not be minimum.)

A disconnecting set of edges in a graph G is a $T \subset E(G)$ s.t. $G-T$ is disconnected.

For a graph G with at least two vertices, the edge connectivity of $G, \kappa^{\prime}(G)$, is the cardinality of a minimum disconnecting set. The edge connectivity of each 1 -vertex graph is defined to be 0 . In particular, $\kappa^{\prime}\left(K_{1}\right)=0$.

An edge cut in a graph G is the set of edges of G connecting the vertices of some $S \subset V(G)$ with $\bar{S}=V(G)-S$.

For $S \subset V(G)$ we denote by $E(S, \bar{S})$ the set of edges of G connecting S with \bar{S}.

Observation: If T is a disconnecting set in G with $|T|=\kappa^{\prime}(G)$, then T is an edge cut.
(Otherwise, T would not be minimum.)
A graph G is k-edge-connected if $\kappa^{\prime}(G) \geq k$.

