
Matchings in general graphs, III

Lecture 19



Theorem 3.7 (Tutte, 1947): A graph G has a p.m. if and only if

o(G − S) ≤ |S| ∀S ⊆ V (G). (1)

Theorem 3.8 (Petersen, 1891): Every 3-regular graph with no
cut-edges has a p.m.

Theorem 3.9 (Petersen, 1891): For every k ≥ 1, every
2k -regular graph has a 2-factor.

Corollary (Petersen, 1891): For every k ≥ 1, the edges of every
2k -regular graph partition into k 2-factors.



Theorem 3.10 (Berge-Tutte Formula, 1958): For every graph G,

|V (G)| − 2α′(G) = maxS⊆V (G){o(G − S)− |S|}. (2)

Proof. We will prove ≥ and ≤.

Part ≥. Let M a matching in G of size α′(G). Given any
S ⊆ V (G), M does not cover a vertex in at least o(G − S)− |S|
odd components of G − S. This yields

|V (G)| − 2α′(G) ≥ o(G − S)− |S|.

This proves our part.



Part ≤.
Let d = maxS⊆V (G){o(G − S)− |S|}. Trying S = ∅ yields d ≥ 0.
Moreover, by Tutte’s Theorem, if d = 0, then we are done. So
suppose d ≥ 1.
Fix S0 ⊆ V (G) such that d = o(G − S0)− |S0|.
Let H be obtained from a copy of G and a disjoint from it copy
of Kd with vertex set D by adding all edges with one end in
V (G) and one end in D.

Since the parity of d = o(G − S0)− |S0| is the same as of
o(G − S0) + |S0|, which in turn is the same as the parity of n,

|V (H)| = n + d is even.

We now claim that
H has a p.m. (3)
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Indeed, suppose H has no p.m. Then by Tutte’s Theorem, there
is T ⊆ V (H) s.t.

o(H − T )− |T | ≥ 1. (4)

Since d ≥ 1, H is connected. This and the fact that |V (H)| is
even imply that T ̸= ∅.

If there is w ∈ D − T , then H − T is connected, and hence
o(H − T ) ≤ 1. This contradicts (4). Thus D ⊂ T .
It follows that

o(G − (T − D)) = o(H − T ) ≥ |T |+ 1 = |T − D|+ d + 1.

In other words, o(G − (T − D))− |T − D| ≥ d + 1,
contradicting the definition of d .

Corollary 3.11: If a graph G with an even number of vertices
has no p.m., then there is an S ⊂ V (G) s.t. o(G −S)− |S| ≥ 2.
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Main theorems in Chapter 3:
1. Hall’s Theorem on matchings in bipartite graphs (Theorem
3.2).

2. König–Egerváry Theorem on vertex covers (Theorem 3.4).

3. Tutte’s Theorem on p.m. in general graphs (Theorem 3.7).

4. Petersen’s Theorems (Theorems 3.8 and 3.9).

5. Berge-Tutte Formula (Theorem 3.10).

6. Gale-Shapley Algorithm and its proof.
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2. König–Egerváry Theorem on vertex covers (Theorem 3.4).

3. Tutte’s Theorem on p.m. in general graphs (Theorem 3.7).

4. Petersen’s Theorems (Theorems 3.8 and 3.9).

5. Berge-Tutte Formula (Theorem 3.10).

6. Gale-Shapley Algorithm and its proof.



In many applications of Graph Theory one needs a measure of
how vulnerable for a given connected graph is its
connectedness, i.e. how difficult is to make a graph
disconnected. For example, for large n, the graph Kn seems
more ”reliable” than the graph Pn.

We will study the most popular measures.

A separating set (vertex cut) in a graph G is an S ⊂ V (G) s.t.
G − S is disconnected.

Observe that Kn has no separating sets.

The connectivity of G, κ(G), is the minimum k s.t. for some
S ⊆ V (G) with |S| = k , graph G − S either is disconnected or
has at most one vertex.

Note that with this definition, κ(K1) = 0. (Also for each 1-vertex
graph.)
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Lemma 4.1: For every connected n-vertex graph G, κ(G) is the
minimum of n − 1 and the size of a minimum separating set .

Proof. If an n-vertex graph G has a separating set S, then
G − S has at least two vertices. Hence in this case the
connectivity is the minimum size of a separating set.

If our G has no separating sets, then each vertex is adjacent to
each other vertex, and the connectivity is n − 1.

Connectivity of Kn and Kn,m.

A graph G is k -connected if κ(G) ≥ k .

In particular, each (k + 1)-connected graph is also
k -connected.
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A disconnecting set of edges in a graph G is a T ⊂ E(G) s.t.
G − T is disconnected.

For a graph G with at least two vertices, the edge connectivity
of G, κ′(G), is the cardinality of a minimum disconnecting set.
The edge connectivity of each 1-vertex graph is defined to be 0.
In particular, κ′(K1) = 0.

An edge cut in a graph G is the set of edges of G connecting
the vertices of some S ⊂ V (G) with S = V (G)− S.

For S ⊂ V (G) we denote by E(S,S) the set of edges of G
connecting S with S.

Observation: If T is a disconnecting set in G with |T | = κ′(G),
then T is an edge cut.
(Otherwise, T would not be minimum.)

A graph G is k -edge-connected if κ′(G) ≥ k .
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