Representations, isomorphism

Lecture 2

More definitions and examples

Trails, independent sets.

More definitions and examples

Trails, independent sets.
The order of G is $|V(G)|$, i.e. the number of vertices, the size of G is $|E(G)|$, the number of edges.

The open neighborhood of v, denoted $N(v)$ or $N_{G}(v)$ is the set of vertices adjacent to v, and the closed neighborhood of v, denoted $N[v]$ or $N_{G}[v]$ is given by $N[v]=N(v) \cup\{v\}$.

More definitions and examples

Trails, independent sets.
The order of G is $|V(G)|$, i.e. the number of vertices, the size of G is $|E(G)|$, the number of edges.

The open neighborhood of v, denoted $N(v)$ or $N_{G}(v)$ is the set of vertices adjacent to v, and the closed neighborhood of v, denoted $N[v]$ or $N_{G}[v]$ is given by $N[v]=N(v) \cup\{v\}$.

The degree of a vertex $v \in V(G)$ will be denoted by $d(v)$ or $d_{G}(v)$ (when G is not clear from context). The maximum degree of G is $\Delta(G)=\max \{d(v) \mid v \in V(G)\}$. Similarly the minimum degree of G is $\delta(G)=\min \{d(v) \mid v \in V(G)\}$.
We say G is k-regular if every vertex has degree k.

Ways to represent graphs

(a) draw a picture.

Ways to represent graphs

(a) draw a picture.
(b) Set a rule. Example 1:

The vertex set of Petersen graph P is
$\{(i, j): 1 \leq i<j \leq 5\}$ and vertices (i, j) and (k, I) are adjacent iff $\{i, j\} \cap\{k, l\}=\emptyset$.

Ways to represent graphs

(a) draw a picture.
(b) Set a rule. Example 1:

The vertex set of Petersen graph P is
$\{(i, j): 1 \leq i<j \leq 5\}$ and vertices (i, j) and (k, I) are adjacent iff $\{i, j\} \cap\{k, l\}=\emptyset$.

Example 2:

The vertex set of the k-dimensional cube Q_{k} is $V_{k}=\left\{\left(a_{1}, \ldots, a_{k}\right): a_{i} \in\{0,1\}\right\}$ and two vectors in V_{k} are adjacent iff they differ in exactly one coordinate.

Example 2:

The vertex set of the k-dimensional cube Q_{k} is
$V_{k}=\left\{\left(a_{1}, \ldots, a_{k}\right): a_{i} \in\{0,1\}\right\}$ and two vectors in V_{k} are adjacent iff they differ in exactly one coordinate.

(c) Adjacency matrices. Given a loopless graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, the adjacency matrix $A(G)$ of G is the $n \times n$ matrix $\left\{a_{i, j}\right\}_{1 \leq i, j \leq n}$ where $a_{i, j}$ is equal to the number of edges with endpoints v_{i} and v_{j}.
(c) Adjacency matrices. Given a loopless graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, the adjacency matrix $A(G)$ of G is the $n \times n$ matrix $\left\{a_{i, j}\right\}_{1 \leq i, j \leq n}$ where $a_{i, j}$ is equal to the number of edges with endpoints v_{i} and v_{j}.
(d) Incidence matrices. Given a loopless graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $\left\{e_{1}, \ldots, e_{m}\right\}$, the incidence matrix $M(G)$ of G is the $n \times m$ matrix $\left\{m_{i, j}\right\}_{1 \leq i \leq n, 1 \leq j \leq m}$ where $m_{i, j}$ is 1 if v_{i} is an end of e_{j} and 0 otherwise.
(c) Adjacency matrices. Given a loopless graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, the adjacency matrix $A(G)$ of G is the $n \times n$ matrix $\left\{a_{i, j}\right\}_{1 \leq i, j \leq n}$ where $a_{i, j}$ is equal to the number of edges with endpoints v_{i} and v_{j}.
(d) Incidence matrices. Given a loopless graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $\left\{e_{1}, \ldots, e_{m}\right\}$, the incidence matrix $M(G)$ of G is the $n \times m$ matrix $\left\{m_{i, j}\right\}_{1 \leq i \leq n, 1 \leq j \leq m}$ where $m_{i, j}$ is 1 if v_{i} is an end of e_{j} and 0 otherwise.
(e) Lists of neighbors. Given a simple graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, for every v_{i} the list of its neighbors is given.

Graph isomorphism

An isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \rightarrow V(H)$ s.t. $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.

Graph isomorphism

An isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \rightarrow V(H)$ s.t. $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.

An isomorphism from a graph G to a graph H is a bijection $f: V(G) \rightarrow V(H)$ s.t. for every $u, v \in V(G)$ the number of edges with ends u and v in G is the same as the number of edges with ends $f(u)$ and $f(v)$ in H.

Graph isomorphism

An isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \rightarrow V(H)$ s.t. $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.

An isomorphism from a graph G to a graph H is a bijection $f: V(G) \rightarrow V(H)$ s.t. for every $u, v \in V(G)$ the number of edges with ends u and v in G is the same as the number of edges with ends $f(u)$ and $f(v)$ in H.

Two graphs G and H are isomorphic if there is an isomorphism from G to H.

Isomorphism, Example 1:

Isomorphism, Example 2:

Walks

A walk in a graph G is a list $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{\ell}, v_{\ell}$ of vertices v_{i} and edges e_{i} such that for each $1 \leq i \leq \ell$, the endpoints of e_{i} are v_{i-1} and v_{i}.

If the first vertex of a walk is u and the last vertex on the walk is v, we call this a u, v-walk. When G is a simple graph, we also may specify a walk by simply listing the vertices, since it is unambiguous which edge is traversed in each step.

Walks

A walk in a graph G is a list $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{\ell}, v_{\ell}$ of vertices v_{i} and edges e_{i} such that for each $1 \leq i \leq \ell$, the endpoints of e_{i} are v_{i-1} and v_{i}.

If the first vertex of a walk is u and the last vertex on the walk is v, we call this a u, v-walk. When G is a simple graph, we also may specify a walk by simply listing the vertices, since it is unambiguous which edge is traversed in each step.

A u, v-trail is a u, v-walk with no repeated edges (but vertices may repeat). If $u \neq v$, a u, v-path is a u, v-walk with no repeated vertices.
(You should convince yourself that the subgraph definition of a path matches up with the walk definition of a path).
If $u=v$, then we call a u, v-walk or trail closed. The length of a walk, trail or path is the number of edges traversed.

