
Representations, isomorphism

Lecture 2



More definitions and examples
Trails, independent sets.

The order of G is |V (G)|, i.e. the number of vertices, the size of
G is |E(G)|, the number of edges.

The open neighborhood of v , denoted N(v) or NG(v) is the
set of vertices adjacent to v , and the closed neighborhood of
v , denoted N[v ] or NG[v ] is given by N[v ] = N(v) ∪ {v}.

The degree of a vertex v ∈ V (G) will be denoted by d(v) or
dG(v) (when G is not clear from context). The maximum
degree of G is ∆(G) = max{d(v) | v ∈ V (G)}.
Similarly the minimum degree of G is
δ(G) = min{d(v) | v ∈ V (G)}.

We say G is k -regular if every vertex has degree k .
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Ways to represent graphs
(a) draw a picture.

(b) Set a rule. Example 1:
The vertex set of Petersen graph P is
{(i , j) : 1 ≤ i < j ≤ 5} and vertices (i , j) and (k , l) are adjacent
iff {i , j} ∩ {k , l} = ∅.
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Example 2:
The vertex set of the k -dimensional cube Qk is
Vk = {(a1, . . . ,ak ) : ai ∈ {0,1}} and two vectors in Vk are
adjacent iff they differ in exactly one coordinate.
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(c) Adjacency matrices. Given a loopless graph G with vertex
set {v1, . . . , vn}, the adjacency matrix A(G) of G is the n × n
matrix {ai,j}1≤i,j≤n where ai,j is equal to the number of edges
with endpoints vi and vj .

(d) Incidence matrices. Given a loopless graph G with vertex
set {v1, . . . , vn} and edge set {e1, . . . ,em}, the incidence matrix
M(G) of G is the n × m matrix {mi,j}1≤i≤n,1≤j≤m where mi,j is 1
if vi is an end of ej and 0 otherwise.

(e) Lists of neighbors. Given a simple graph G with vertex set
{v1, . . . , vn}, for every vi the list of its neighbors is given.
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Graph isomorphism
An isomorphism from a simple graph G to a simple graph H is a
bijection f : V (G) → V (H) s.t. uv ∈ E(G) if and only if
f (u)f (v) ∈ E(H).

An isomorphism from a graph G to a graph H is a bijection
f : V (G) → V (H) s.t. for every u, v ∈ V (G) the number of
edges with ends u and v in G is the same as the number of
edges with ends f (u) and f (v) in H.

Two graphs G and H are isomorphic if there is an isomorphism
from G to H.
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Isomorphism, Example 1:



Isomorphism, Example 2:



Walks

A walk in a graph G is a list v0,e1, v1,e2, v2, . . . ,eℓ, vℓ of
vertices vi and edges ei such that for each 1 ≤ i ≤ ℓ, the
endpoints of ei are vi−1 and vi .

If the first vertex of a walk is u and the last vertex on the walk is
v , we call this a u, v -walk. When G is a simple graph, we also
may specify a walk by simply listing the vertices, since it is
unambiguous which edge is traversed in each step.

A u, v -trail is a u, v -walk with no repeated edges (but vertices
may repeat). If u ̸= v , a u, v -path is a u, v -walk with no
repeated vertices.
(You should convince yourself that the subgraph definition of a
path matches up with the walk definition of a path).
If u = v , then we call a u, v -walk or trail closed. The length of
a walk, trail or path is the number of edges traversed.
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