Representations, isomorphism

Lecture 2

More definitions and examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Trails, independent sets.

More definitions and examples

Trails, independent sets.

The **order** of *G* is |V(G)|, i.e. the number of vertices, the size of *G* is |E(G)|, the number of edges.

The **open neighborhood** of *v*, denoted N(v) or $N_G(v)$ is the set of vertices adjacent to *v*, and the **closed neighborhood** of *v*, denoted N[v] or $N_G[v]$ is given by $N[v] = N(v) \cup \{v\}$.

(日) (日) (日) (日) (日) (日) (日)

More definitions and examples

Trails, independent sets.

The **order** of *G* is |V(G)|, i.e. the number of vertices, the size of *G* is |E(G)|, the number of edges.

The **open neighborhood** of *v*, denoted N(v) or $N_G(v)$ is the set of vertices adjacent to *v*, and the **closed neighborhood** of *v*, denoted N[v] or $N_G[v]$ is given by $N[v] = N(v) \cup \{v\}$.

The **degree** of a vertex $v \in V(G)$ will be denoted by d(v) or $d_G(v)$ (when *G* is not clear from context). The **maximum degree** of *G* is $\Delta(G) = \max\{d(v) \mid v \in V(G)\}$. Similarly the **minimum degree** of *G* is $\delta(G) = \min\{d(v) \mid v \in V(G)\}$.

We say *G* is *k*-regular if every vertex has degree *k*.

Ways to represent graphs

(a) draw a picture.

Ways to represent graphs

(a) draw a picture.

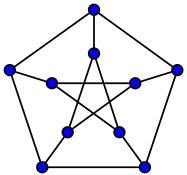
```
(b) Set a rule. Example 1:
The vertex set of Petersen graph P is
\{(i,j) : 1 \le i < j \le 5\} and vertices (i,j) and (k, l) are adjacent
iff \{i,j\} \cap \{k,l\} = \emptyset.
```

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ways to represent graphs

(a) draw a picture.

(b) Set a rule. Example 1: The vertex set of Petersen graph *P* is $\{(i,j) : 1 \le i < j \le 5\}$ and vertices (i,j) and (k,l) are adjacent iff $\{i,j\} \cap \{k,l\} = \emptyset$.



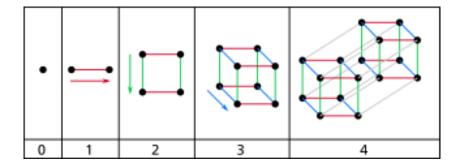
(日) (日) (日) (日) (日) (日) (日)

Example 2:

The vertex set of the *k*-dimensional cube Q_k is $V_k = \{(a_1, \ldots, a_k) : a_i \in \{0, 1\}\}$ and two vectors in V_k are adjacent iff they differ in exactly one coordinate.

Example 2:

The vertex set of the *k*-dimensional cube Q_k is $V_k = \{(a_1, \ldots, a_k) : a_i \in \{0, 1\}\}$ and two vectors in V_k are adjacent iff they differ in exactly one coordinate.



イロン 不得 とくほ とくほ とうほ

(c) Adjacency matrices. Given a loopless graph *G* with vertex set $\{v_1, \ldots, v_n\}$, the adjacency matrix A(G) of *G* is the $n \times n$ matrix $\{a_{i,j}\}_{1 \le i,j \le n}$ where $a_{i,j}$ is equal to the number of edges with endpoints v_i and v_j .

(ロ) (同) (三) (三) (三) (○) (○)

(c) Adjacency matrices. Given a loopless graph *G* with vertex set $\{v_1, \ldots, v_n\}$, the adjacency matrix A(G) of *G* is the $n \times n$ matrix $\{a_{i,j}\}_{1 \le i,j \le n}$ where $a_{i,j}$ is equal to the number of edges with endpoints v_i and v_j .

(d) Incidence matrices. Given a loopless graph *G* with vertex set $\{v_1, \ldots, v_n\}$ and edge set $\{e_1, \ldots, e_m\}$, the incidence matrix M(G) of *G* is the $n \times m$ matrix $\{m_{i,j}\}_{1 \le i \le n, 1 \le j \le m}$ where $m_{i,j}$ is 1 if v_i is an end of e_i and 0 otherwise.

(c) Adjacency matrices. Given a loopless graph *G* with vertex set $\{v_1, \ldots, v_n\}$, the adjacency matrix A(G) of *G* is the $n \times n$ matrix $\{a_{i,j}\}_{1 \le i,j \le n}$ where $a_{i,j}$ is equal to the number of edges with endpoints v_i and v_j .

(d) Incidence matrices. Given a loopless graph *G* with vertex set $\{v_1, \ldots, v_n\}$ and edge set $\{e_1, \ldots, e_m\}$, the incidence matrix M(G) of *G* is the $n \times m$ matrix $\{m_{i,j}\}_{1 \le i \le n, 1 \le j \le m}$ where $m_{i,j}$ is 1 if v_i is an end of e_i and 0 otherwise.

(e) Lists of neighbors. Given a simple graph *G* with vertex set $\{v_1, \ldots, v_n\}$, for every v_i the list of its neighbors is given.

Graph isomorphism

An isomorphism from a simple graph *G* to a simple graph *H* is a bijection $f : V(G) \rightarrow V(H)$ s.t. $uv \in E(G)$ if and only if $f(u)f(v) \in E(H)$.

Graph isomorphism

An isomorphism from a simple graph *G* to a simple graph *H* is a bijection $f : V(G) \rightarrow V(H)$ s.t. $uv \in E(G)$ if and only if $f(u)f(v) \in E(H)$.

An isomorphism from a graph *G* to a graph *H* is a bijection $f: V(G) \rightarrow V(H)$ s.t. for every $u, v \in V(G)$ the number of edges with ends *u* and *v* in *G* is the same as the number of edges with ends f(u) and f(v) in *H*.

(日) (日) (日) (日) (日) (日) (日)

Graph isomorphism

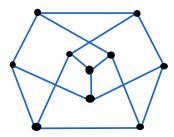
An isomorphism from a simple graph *G* to a simple graph *H* is a bijection $f : V(G) \rightarrow V(H)$ s.t. $uv \in E(G)$ if and only if $f(u)f(v) \in E(H)$.

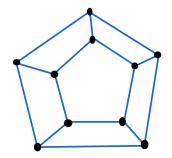
An isomorphism from a graph *G* to a graph *H* is a bijection $f: V(G) \rightarrow V(H)$ s.t. for every $u, v \in V(G)$ the number of edges with ends *u* and *v* in *G* is the same as the number of edges with ends f(u) and f(v) in *H*.

Two graphs G and H are isomorphic if there is an isomorphism from G to H.

(ロ) (同) (三) (三) (三) (○) (○)

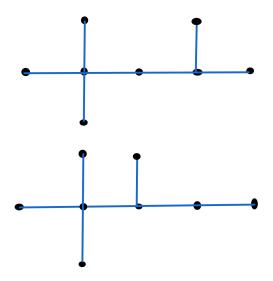
Isomorphism, Example 1:





◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Isomorphism, Example 2:



▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ▲○

Walks

A walk in a graph *G* is a list $v_0, e_1, v_1, e_2, v_2, \ldots, e_\ell, v_\ell$ of vertices v_i and edges e_i such that for each $1 \le i \le \ell$, the endpoints of e_i are v_{i-1} and v_i .

If the first vertex of a walk is u and the last vertex on the walk is v, we call this a u, v-walk. When G is a simple graph, we also may specify a walk by simply listing the vertices, since it is unambiguous which edge is traversed in each step.

(ロ) (同) (三) (三) (三) (○) (○)

Walks

A walk in a graph *G* is a list $v_0, e_1, v_1, e_2, v_2, \ldots, e_\ell, v_\ell$ of vertices v_i and edges e_i such that for each $1 \le i \le \ell$, the endpoints of e_i are v_{i-1} and v_i .

If the first vertex of a walk is u and the last vertex on the walk is v, we call this a u, v-walk. When G is a simple graph, we also may specify a walk by simply listing the vertices, since it is unambiguous which edge is traversed in each step.

A *u*, *v*-trail is a *u*, *v*-walk with no repeated edges (but vertices may repeat). If $u \neq v$, a *u*, *v*-path is a *u*, *v*-walk with no repeated vertices.

(You should convince yourself that the subgraph definition of a path matches up with the walk definition of a path).

If u = v, then we call a u, v-walk or trail **closed**. The **length** of a walk, trail or path is the number of edges traversed.