Connectivity

Lecture 20

In many applications of Graph Theory one needs a measure of how vulnerable for a given connected graph is its connectedness, i.e. how difficult is to make a graph disconnected. For example, for large n, the graph K_{n} seems more "reliable" than the graph P_{n}.

We will study the most popular measures.
A separating set (vertex cut) in a graph G is an $S \subset V(G)$ s.t. $G-S$ is disconnected.

Observe that K_{n} has no separating sets.
The connectivity of $G, \kappa(G)$, is the minimum k s.t. for some $S \subseteq V(G)$ with $|S|=k$, graph $G-S$ either is disconnected or has at most one vertex.

Note that with this definition, $\kappa\left(K_{1}\right)=0$. (Also for each 1-vertex graph.)

Lemma 4.1: For every connected n-vertex graph $G, \kappa(G)$ is the minimum of $n-1$ and the size of a minimum separating set .

Proof. If an n-vertex graph G has a separating set S, then $G-S$ has at least two vertices. Hence in this case the connectivity is the minimum size of a separating set.

If our G has no separating sets, then each vertex is adjacent to each other vertex, and the connectivity is $n-1$.

Connectivity of K_{n} and $K_{n, m}$.

Lemma 4.1: For every connected n-vertex graph $G, \kappa(G)$ is the minimum of $n-1$ and the size of a minimum separating set .

Proof. If an n-vertex graph G has a separating set S, then $G-S$ has at least two vertices. Hence in this case the connectivity is the minimum size of a separating set.

If our G has no separating sets, then each vertex is adjacent to each other vertex, and the connectivity is $n-1$.

Connectivity of K_{n} and $K_{n, m}$.
A graph G is k-connected if $\kappa(G) \geq k$.
In particular, each $(k+1)$-connected graph is also k-connected.

A disconnecting set of edges in a graph G is a $T \subset E(G)$ s.t. $G-T$ is disconnected.

For a graph G with at least two vertices, the edge connectivity of $G, \kappa^{\prime}(G)$, is the cardinality of a minimum disconnecting set. The edge connectivity of each 1 -vertex graph is defined to be 0 . In particular, $\kappa^{\prime}\left(K_{1}\right)=0$.

A disconnecting set of edges in a graph G is a $T \subset E(G)$ s.t. $G-T$ is disconnected.

For a graph G with at least two vertices, the edge connectivity of $G, \kappa^{\prime}(G)$, is the cardinality of a minimum disconnecting set. The edge connectivity of each 1 -vertex graph is defined to be 0 . In particular, $\kappa^{\prime}\left(K_{1}\right)=0$.

An edge cut in a graph G is the set of edges of G connecting the vertices of some $S \subset V(G)$ with $\bar{S}=V(G)-S$.

For $S \subset V(G)$ we denote by $E(S, \bar{S})$ the set of edges of G connecting S with \bar{S}.

Observation: If T is a disconnecting set in G with $|T|=\kappa^{\prime}(G)$, then T is an edge cut.
(Otherwise, T would not be minimum.)

A disconnecting set of edges in a graph G is a $T \subset E(G)$ s.t. $G-T$ is disconnected.

For a graph G with at least two vertices, the edge connectivity of $G, \kappa^{\prime}(G)$, is the cardinality of a minimum disconnecting set. The edge connectivity of each 1 -vertex graph is defined to be 0 . In particular, $\kappa^{\prime}\left(K_{1}\right)=0$.

An edge cut in a graph G is the set of edges of G connecting the vertices of some $S \subset V(G)$ with $\bar{S}=V(G)-S$.

For $S \subset V(G)$ we denote by $E(S, \bar{S})$ the set of edges of G connecting S with \bar{S}.

Observation: If T is a disconnecting set in G with $|T|=\kappa^{\prime}(G)$, then T is an edge cut.
(Otherwise, T would not be minimum.)
A graph G is k-edge-connected if $\kappa^{\prime}(G) \geq k$.

Theorem 4.2: For every graph $G, \kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)$.
Proof. For 1-vertex graphs and disconnected graphs, the claim is trivial. Suppose $|V(G)|=n \geq 2$ and G is connected.

The inequality $\kappa^{\prime}(G) \leq \delta(G)$ is easy: deleting from G the $\delta(G)$ edges incident to a vertex v of the minimum degree makes the remaining graph disconnected.

Theorem 4.2: For every graph $G, \kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)$.

Proof. For 1-vertex graphs and disconnected graphs, the claim is trivial. Suppose $|V(G)|=n \geq 2$ and G is connected.

The inequality $\kappa^{\prime}(G) \leq \delta(G)$ is easy: deleting from G the $\delta(G)$ edges incident to a vertex v of the minimum degree makes the remaining graph disconnected.

Let us prove $\kappa(G) \leq \kappa^{\prime}(G)$. By the observation above, there is $S \subseteq V(G)$ s.t. $\kappa^{\prime}(G)=|E(S, \bar{S})|$. Let $s=|S|$.

Case 1: Each $x \in S$ is adjacent to each $y \in \bar{S}$. Then

$$
\kappa^{\prime}(G)=|E(S, \bar{S})| \geq s(n-s) \geq 1(n-1)=n-1
$$

But by Lemma 4.1, $\kappa(G) \leq n-1$, so we are done.

Case 2: There is $x \in S$ not adjacent to some $y \in \bar{S}$.
Let $R=(N(x) \cap \bar{S}) \cup\left\{z \in S-x: z\right.$ has a neighbor $\left.z^{\prime} \in \bar{S}\right\}$.

Case 2: There is $x \in S$ not adjacent to some $y \in \bar{S}$.
Let $R=(N(x) \cap \bar{S}) \cup\left\{z \in S-x: z\right.$ has a neighbor $\left.z^{\prime} \in \bar{S}\right\}$.
Claim 1: $G-R$ is disconnected.
Indeed, x and y are in distinct components of $G-R$.

Case 2: There is $x \in S$ not adjacent to some $y \in \bar{S}$. Let $R=(N(x) \cap \bar{S}) \cup\left\{z \in S-x: z \quad\right.$ has a neighbor $\left.z^{\prime} \in \bar{S}\right\}$.

Claim 1: $G-R$ is disconnected.
Indeed, x and y are in distinct components of $G-R$.
Claim 2: $|R| \leq|E(S, \bar{S})|=\kappa^{\prime}(G)$.
Indeed, with each vertex $v \in N(x) \cap \bar{S}$ we can associate edge $x v \in E(S, \bar{S})$, and with each vertex $z \in S-x$ s.t.
z has a neighbor $z^{\prime} \in \bar{S}$ we can associate edge $z z^{\prime} \in E(S, \bar{S})$.
These claims together prove the theorem.

The differences $\delta(G)-\kappa^{\prime}(G)$ and $\kappa^{\prime}(G)-\kappa(G)$ can be arbitrarily large. However, the following is true.

Theorem 4.3: For every 3-regular graph G with $|V(G)| \geq 4$, $\kappa(G)=\kappa^{\prime}(G)$.

The differences $\delta(G)-\kappa^{\prime}(G)$ and $\kappa^{\prime}(G)-\kappa(G)$ can be arbitrarily large. However, the following is true.

Theorem 4.3: For every 3-regular graph G with $|V(G)| \geq 4$, $\kappa(G)=\kappa^{\prime}(G)$.

Proof. In view of Theorem 4.2, it is enough to find for every 3-regular graph G with $|V(G)| \geq 4$ an edge cut with $\kappa(G)$ edges. For a 3-regular graph $G, 0 \leq \kappa(G) \leq 3$.

The differences $\delta(G)-\kappa^{\prime}(G)$ and $\kappa^{\prime}(G)-\kappa(G)$ can be arbitrarily large. However, the following is true.

Theorem 4.3: For every 3-regular graph G with $|V(G)| \geq 4$, $\kappa(G)=\kappa^{\prime}(G)$.

Proof. In view of Theorem 4.2, it is enough to find for every 3-regular graph G with $|V(G)| \geq 4$ an edge cut with $\kappa(G)$ edges. For a 3-regular graph $G, 0 \leq \kappa(G) \leq 3$.

Case $0: \kappa(G)=0$. Then, since $|V(G)| \geq 4, G$ is disconnected. Thus $\kappa^{\prime}(G)=0=\kappa(G)$.

The differences $\delta(G)-\kappa^{\prime}(G)$ and $\kappa^{\prime}(G)-\kappa(G)$ can be arbitrarily large. However, the following is true.

Theorem 4.3: For every 3-regular graph G with $|V(G)| \geq 4$, $\kappa(G)=\kappa^{\prime}(G)$.

Proof. In view of Theorem 4.2, it is enough to find for every 3-regular graph G with $|V(G)| \geq 4$ an edge cut with $\kappa(G)$ edges. For a 3-regular graph $G, 0 \leq \kappa(G) \leq 3$.

Case 0: $\kappa(G)=0$. Then, since $|V(G)| \geq 4, G$ is disconnected. Thus $\kappa^{\prime}(G)=0=\kappa(G)$.

Case 1: $\kappa(G)=1$. Then, since $|V(G)| \geq 4, G$ has a cut vertex, say v. This means $V(G)=\{v\} \cup A \cup B$, s.t. there are no edges between A and B. Since $d(v)=3$, either $\left|E_{\mathcal{G}}(A,\{v\})\right|=1$ or $\left|E_{G}(B,\{v\})\right|=1$. By symmetry, we may assume $\left|E_{G}(A,\{v\})\right|=1$ and u is the neighbor of v in A. Then $u v$ is a cut edge in G, and hence $\kappa^{\prime}(G)=1$, as claimed.

Case 2: $\kappa(G)=2$. Since $|V(G)| \geq 4, G$ has a 2 -vertex separating set, say $\{v, u\}$. This means $V(G)=\{v, u\} \cup A \cup B$, s.t. there are no edges between A and B.

Since $\kappa(G)=2$, each of v, u has a neighbor in A and a neighbor in B, as in the picture. If $\kappa^{\prime}(G)>2$, then there is a third edge between A and $\{u, v\}$, say $u x^{\prime}$. Similarly, there is a third edge between B and $\{u, v\}$. Since already know all edges incident to u, this is an edge incident to v, say $v w^{\prime}$.

Since $\kappa(G)=2$, each of v, u has a neighbor in A and a neighbor in B, as in the picture. If $\kappa^{\prime}(G)>2$, then there is a third edge between A and $\{u, v\}$, say $u x^{\prime}$. Similarly, there is a third edge between B and $\{u, v\}$. Since already know all edges incident to u, this is an edge incident to v, say $v w^{\prime}$.

But then we know all edges incident to u or v, so we see that the edges $u z$ and $y v$ separate $A \cup\{u\}$ from $B \cup\{v\}$. This finishes Case 2.

Since $\kappa(G)=2$, each of v, u has a neighbor in A and a neighbor in B, as in the picture. If $\kappa^{\prime}(G)>2$, then there is a third edge between A and $\{u, v\}$, say $u x^{\prime}$.
Similarly, there is a third edge between B and $\{u, v\}$. Since already know all edges incident to u, this is an edge incident to v, say $v w^{\prime}$.

But then we know all edges incident to u or v, so we see that the edges $u z$ and $y v$ separate $A \cup\{u\}$ from $B \cup\{v\}$. This finishes Case 2.

Case 3: $\kappa(G)=3$. By Theorem 4.2, $\kappa^{\prime}(G) \leq \delta(G)=3$. So again the theorem holds.

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \geq 3$. Then G is 2-connected if and only if for each $u, v \in V(G)$ graph G has internally disjoint u, v-paths.

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \geq 3$. Then G is 2-connected if and only if for each $u, v \in V(G)$ graph G has internally disjoint u, v-paths.

Proof. Let $n \geq 3$.
$(\Leftarrow) \quad$ We prove the contrapositive. Suppose an n-vertex G is not 2 -connected. Since $n \geq 3$, by Lemma 4.1 there is an $x \in V(G)$ such that $G-x$ is disconnected. This means there is a partition $V(G)=\{x\} \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects A with B.

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \geq 3$. Then G is 2-connected if and only if for each $u, v \in V(G)$ graph G has internally disjoint u, v-paths.

Proof. Let $n \geq 3$.
$(\Leftarrow) \quad$ We prove the contrapositive. Suppose an n-vertex G is not 2 -connected. Since $n \geq 3$, by Lemma 4.1 there is an $x \in V(G)$ such that $G-x$ is disconnected. This means there is a partition $V(G)=\{x\} \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects A with B.

Let $a \in A$ and $b \in B$. Then each a, b-path in G contains x.
Thus G has no internally disjoint a, b-paths.

