
Connectivity

Lecture 20



In many applications of Graph Theory one needs a measure of
how vulnerable for a given connected graph is its
connectedness, i.e. how difficult is to make a graph
disconnected. For example, for large n, the graph Kn seems
more ”reliable” than the graph Pn.

We will study the most popular measures.

A separating set (vertex cut) in a graph G is an S ⊂ V (G) s.t.
G − S is disconnected.

Observe that Kn has no separating sets.

The connectivity of G, κ(G), is the minimum k s.t. for some
S ⊆ V (G) with |S| = k , graph G − S either is disconnected or
has at most one vertex.

Note that with this definition, κ(K1) = 0. (Also for each 1-vertex
graph.)



Lemma 4.1: For every connected n-vertex graph G, κ(G) is the
minimum of n − 1 and the size of a minimum separating set .

Proof. If an n-vertex graph G has a separating set S, then
G − S has at least two vertices. Hence in this case the
connectivity is the minimum size of a separating set.

If our G has no separating sets, then each vertex is adjacent to
each other vertex, and the connectivity is n − 1.

Connectivity of Kn and Kn,m.

A graph G is k -connected if κ(G) ≥ k .

In particular, each (k + 1)-connected graph is also
k -connected.
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A disconnecting set of edges in a graph G is a T ⊂ E(G) s.t.
G − T is disconnected.

For a graph G with at least two vertices, the edge connectivity
of G, κ′(G), is the cardinality of a minimum disconnecting set.
The edge connectivity of each 1-vertex graph is defined to be 0.
In particular, κ′(K1) = 0.

An edge cut in a graph G is the set of edges of G connecting
the vertices of some S ⊂ V (G) with S = V (G)− S.

For S ⊂ V (G) we denote by E(S,S) the set of edges of G
connecting S with S.

Observation: If T is a disconnecting set in G with |T | = κ′(G),
then T is an edge cut.
(Otherwise, T would not be minimum.)

A graph G is k -edge-connected if κ′(G) ≥ k .
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Theorem 4.2: For every graph G, κ(G) ≤ κ′(G) ≤ δ(G).

Proof. For 1-vertex graphs and disconnected graphs, the claim
is trivial. Suppose |V (G)| = n ≥ 2 and G is connected.

The inequality κ′(G) ≤ δ(G) is easy: deleting from G the δ(G)
edges incident to a vertex v of the minimum degree makes the
remaining graph disconnected.

Let us prove κ(G) ≤ κ′(G). By the observation above, there is
S ⊆ V (G) s.t. κ′(G) = |E(S,S)|. Let s = |S|.

Case 1: Each x ∈ S is adjacent to each y ∈ S. Then

κ′(G) = |E(S,S)| ≥ s(n − s) ≥ 1(n − 1) = n − 1.

But by Lemma 4.1, κ(G) ≤ n − 1, so we are done.
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Case 2: There is x ∈ S not adjacent to some y ∈ S.

Let R = (N(x) ∩ S) ∪ {z ∈ S − x : z has a neighbor z ′ ∈ S}.

Claim 1: G − R is disconnected.

Indeed, x and y are in distinct components of G − R.

Claim 2: |R| ≤ |E(S,S)| = κ′(G).

Indeed, with each vertex v ∈ N(x) ∩ S we can associate edge
xv ∈ E(S,S), and with each vertex z ∈ S − x s.t.
z has a neighbor z ′ ∈ S we can associate edge zz ′ ∈ E(S,S).

These claims together prove the theorem.
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The differences δ(G)− κ′(G) and κ′(G)− κ(G) can be
arbitrarily large. However, the following is true.

Theorem 4.3: For every 3-regular graph G with |V (G)| ≥ 4,
κ(G) = κ′(G).

Proof. In view of Theorem 4.2, it is enough to find for every
3-regular graph G with |V (G)| ≥ 4 an edge cut with κ(G)
edges. For a 3-regular graph G, 0 ≤ κ(G) ≤ 3.

Case 0: κ(G) = 0. Then, since |V (G)| ≥ 4, G is disconnected.
Thus κ′(G) = 0 = κ(G).

Case 1: κ(G) = 1. Then, since |V (G)| ≥ 4, G has a cut vertex,
say v . This means V (G) = {v} ∪ A ∪ B, s.t. there are no edges
between A and B. Since d(v) = 3, either |EG(A, {v})| = 1 or
|EG(B, {v})| = 1. By symmetry, we may assume
|EG(A, {v})| = 1 and u is the neighbor of v in A. Then uv is a
cut edge in G, and hence κ′(G) = 1, as claimed.
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Case 2: κ(G) = 2. Since |V (G)| ≥ 4, G has a 2-vertex
separating set, say {v ,u}. This means V (G) = {v ,u} ∪ A ∪ B,
s.t. there are no edges between A and B.



Since κ(G) = 2, each of v ,u has a neighbor in A and a
neighbor in B, as in the picture. If κ′(G) > 2, then there is a
third edge between A and {u, v}, say ux ′.
Similarly, there is a third edge between B and {u, v}. Since
already know all edges incident to u, this is an edge incident to
v , say vw ′.

But then we know all edges incident to u or v , so we see that
the edges uz and yv separate A ∪ {u} from B ∪ {v}. This
finishes Case 2.

Case 3: κ(G) = 3. By Theorem 4.2, κ′(G) ≤ δ(G) = 3. So
again the theorem holds.
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Two u, v -paths are internally disjoint, if they do not have
common internal vertices.

Theorem 4.4 (Whitney, 1932). Let |V (G)| ≥ 3. Then G is
2-connected if and only if for each u, v ∈ V (G) graph G has
internally disjoint u, v -paths.

Proof. Let n ≥ 3.
(⇐) We prove the contrapositive. Suppose an n-vertex G is
not 2-connected. Since n ≥ 3, by Lemma 4.1 there is an
x ∈ V (G) such that G − x is disconnected. This means there is
a partition V (G) = {x} ∪ A ∪ B with A ̸= ∅ and B ̸= ∅ such that
no edge connects A with B.

Let a ∈ A and b ∈ B. Then each a,b-path in G contains x .
Thus G has no internally disjoint a,b-paths.
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