Connectivity

Lecture 20

In many applications of Graph Theory one needs a measure of how vulnerable for a given connected graph is its connectedness, i.e. how difficult is to make a graph disconnected. For example, for large n, the graph K_n seems more "reliable" than the graph P_n .

We will study the most popular measures.

A separating set (vertex cut) in a graph *G* is an $S \subset V(G)$ s.t. G - S is disconnected.

Observe that K_n has no separating sets.

The connectivity of G, $\kappa(G)$, is the minimum k s.t. for some $S \subseteq V(G)$ with |S| = k, graph G - S either is disconnected or has at most one vertex.

Note that with this definition, $\kappa(K_1) = 0$. (Also for each 1-vertex graph.)

Lemma 4.1: For every connected *n*-vertex graph G, $\kappa(G)$ is the minimum of n - 1 and the size of a minimum separating set.

Proof. If an *n*-vertex graph *G* has a separating set *S*, then G - S has at least two vertices. Hence in this case the connectivity is the minimum size of a separating set.

If our *G* has no separating sets, then each vertex is adjacent to each other vertex, and the connectivity is n - 1.

(ロ) (同) (三) (三) (三) (○) (○)

Connectivity of K_n and $K_{n,m}$.

Lemma 4.1: For every connected *n*-vertex graph G, $\kappa(G)$ is the minimum of n - 1 and the size of a minimum separating set.

Proof. If an *n*-vertex graph *G* has a separating set *S*, then G - S has at least two vertices. Hence in this case the connectivity is the minimum size of a separating set.

If our *G* has no separating sets, then each vertex is adjacent to each other vertex, and the connectivity is n - 1.

Connectivity of K_n and $K_{n,m}$.

A graph *G* is *k*-connected if $\kappa(G) \ge k$.

In particular, each (k + 1)-connected graph is also *k*-connected.

A disconnecting set of edges in a graph *G* is a $T \subset E(G)$ s.t. G - T is disconnected.

For a graph *G* with at least two vertices, the edge connectivity of *G*, $\kappa'(G)$, is the cardinality of a minimum disconnecting set. The edge connectivity of each 1-vertex graph is defined to be 0. In particular, $\kappa'(K_1) = 0$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A disconnecting set of edges in a graph *G* is a $T \subset E(G)$ s.t. G - T is disconnected.

For a graph *G* with at least two vertices, the edge connectivity of *G*, $\kappa'(G)$, is the cardinality of a minimum disconnecting set. The edge connectivity of each 1-vertex graph is defined to be 0. In particular, $\kappa'(K_1) = 0$.

An edge cut in a graph *G* is the set of edges of *G* connecting the vertices of some $S \subset V(G)$ with $\overline{S} = V(G) - S$.

For $S \subset V(G)$ we denote by $E(S, \overline{S})$ the set of edges of *G* connecting *S* with \overline{S} .

Observation: If *T* is a disconnecting set in *G* with $|T| = \kappa'(G)$, then *T* is an edge cut. (Otherwise, *T* would not be minimum.)

A disconnecting set of edges in a graph *G* is a $T \subset E(G)$ s.t. G - T is disconnected.

For a graph *G* with at least two vertices, the edge connectivity of *G*, $\kappa'(G)$, is the cardinality of a minimum disconnecting set. The edge connectivity of each 1-vertex graph is defined to be 0. In particular, $\kappa'(K_1) = 0$.

An edge cut in a graph *G* is the set of edges of *G* connecting the vertices of some $S \subset V(G)$ with $\overline{S} = V(G) - S$.

For $S \subset V(G)$ we denote by $E(S, \overline{S})$ the set of edges of *G* connecting *S* with \overline{S} .

Observation: If *T* is a disconnecting set in *G* with $|T| = \kappa'(G)$, then *T* is an edge cut. (Otherwise, *T* would not be minimum.)

A graph *G* is *k*-edge-connected if $\kappa'(G) \ge k$.

Theorem 4.2: For every graph G, $\kappa(G) \leq \kappa'(G) \leq \delta(G)$.

Proof. For 1-vertex graphs and disconnected graphs, the claim is trivial. Suppose $|V(G)| = n \ge 2$ and *G* is connected.

The inequality $\kappa'(G) \leq \delta(G)$ is easy: deleting from *G* the $\delta(G)$ edges incident to a vertex *v* of the minimum degree makes the remaining graph disconnected.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem 4.2: For every graph G, $\kappa(G) \leq \kappa'(G) \leq \delta(G)$.

Proof. For 1-vertex graphs and disconnected graphs, the claim is trivial. Suppose $|V(G)| = n \ge 2$ and *G* is connected.

The inequality $\kappa'(G) \leq \delta(G)$ is easy: deleting from *G* the $\delta(G)$ edges incident to a vertex *v* of the minimum degree makes the remaining graph disconnected.

Let us prove $\kappa(G) \leq \kappa'(G)$. By the observation above, there is $S \subseteq V(G)$ s.t. $\kappa'(G) = |E(S, \overline{S})|$. Let s = |S|.

Case 1: Each $x \in S$ is adjacent to each $y \in \overline{S}$. Then

 $\kappa'(G) = |E(S,\overline{S})| \ge s(n-s) \ge 1(n-1) = n-1.$

But by Lemma 4.1, $\kappa(G) \leq n - 1$, so we are done.

Case 2: There is $x \in S$ not adjacent to some $y \in \overline{S}$. Let $R = (N(x) \cap \overline{S}) \cup \{z \in S - x : z \text{ has a neighbor } z' \in \overline{S}\}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Case 2: There is $x \in S$ not adjacent to some $y \in \overline{S}$. Let $R = (N(x) \cap \overline{S}) \cup \{z \in S - x : z \text{ has a neighbor } z' \in \overline{S}\}.$ Claim 1: G - R is disconnected.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Indeed, x and y are in distinct components of G - R.

Case 2: There is $x \in S$ not adjacent to some $y \in \overline{S}$.

Let $R = (N(x) \cap \overline{S}) \cup \{z \in S - x : z \text{ has a neighbor } z' \in \overline{S}\}.$

Claim 1: G - R is disconnected.

Indeed, x and y are in distinct components of G - R.

Claim 2: $|\mathbf{R}| \leq |\mathbf{E}(\mathbf{S}, \overline{\mathbf{S}})| = \kappa'(\mathbf{G}).$

Indeed, with each vertex $v \in N(x) \cap \overline{S}$ we can associate edge $xv \in E(S, \overline{S})$, and with each vertex $z \in S - x$ s.t.

z has a neighbor $z' \in \overline{S}$ we can associate edge $zz' \in E(S, \overline{S})$.

(日) (日) (日) (日) (日) (日) (日)

These claims together prove the theorem.

Theorem 4.3: For every 3-regular graph *G* with $|V(G)| \ge 4$, $\kappa(G) = \kappa'(G)$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Theorem 4.3: For every 3-regular graph *G* with $|V(G)| \ge 4$, $\kappa(G) = \kappa'(G)$.

Proof. In view of Theorem 4.2, it is enough to find for every 3-regular graph *G* with $|V(G)| \ge 4$ an edge cut with $\kappa(G)$ edges. For a 3-regular graph *G*, $0 \le \kappa(G) \le 3$.

A D F A 同 F A E F A E F A Q A

Theorem 4.3: For every 3-regular graph *G* with $|V(G)| \ge 4$, $\kappa(G) = \kappa'(G)$.

Proof. In view of Theorem 4.2, it is enough to find for every 3-regular graph *G* with $|V(G)| \ge 4$ an edge cut with $\kappa(G)$ edges. For a 3-regular graph *G*, $0 \le \kappa(G) \le 3$.

Case 0: $\kappa(G) = 0$. Then, since $|V(G)| \ge 4$, G is disconnected. Thus $\kappa'(G) = 0 = \kappa(G)$.

Theorem 4.3: For every 3-regular graph *G* with $|V(G)| \ge 4$, $\kappa(G) = \kappa'(G)$.

Proof. In view of Theorem 4.2, it is enough to find for every 3-regular graph *G* with $|V(G)| \ge 4$ an edge cut with $\kappa(G)$ edges. For a 3-regular graph *G*, $0 \le \kappa(G) \le 3$.

Case 0: $\kappa(G) = 0$. Then, since $|V(G)| \ge 4$, *G* is disconnected. Thus $\kappa'(G) = 0 = \kappa(G)$.

Case 1: $\kappa(G) = 1$. Then, since $|V(G)| \ge 4$, *G* has a cut vertex, say *v*. This means $V(G) = \{v\} \cup A \cup B$, s.t. there are no edges between *A* and *B*. Since d(v) = 3, either $|E_G(A, \{v\})| = 1$ or $|E_G(B, \{v\})| = 1$. By symmetry, we may assume $|E_G(A, \{v\})| = 1$ and *u* is the neighbor of *v* in *A*. Then *uv* is a cut edge in *G*, and hence $\kappa'(G) = 1$, as claimed.

Case 2: $\kappa(G) = 2$. Since $|V(G)| \ge 4$, *G* has a 2-vertex separating set, say $\{v, u\}$. This means $V(G) = \{v, u\} \cup A \cup B$, s.t. there are no edges between *A* and *B*.

Since $\kappa(G) = 2$, each of v, u has a neighbor in A and a neighbor in B, as in the picture. If $\kappa'(G) > 2$, then there is a third edge between A and $\{u, v\}$, say ux'. Similarly, there is a third edge between B and $\{u, v\}$. Since already know all edges incident to u, this is an edge incident to v, say vw'.

(ロ) (同) (三) (三) (三) (○) (○)

Since $\kappa(G) = 2$, each of v, u has a neighbor in A and a neighbor in B, as in the picture. If $\kappa'(G) > 2$, then there is a third edge between A and $\{u, v\}$, say ux'. Similarly, there is a third edge between B and $\{u, v\}$. Since already know all edges incident to u, this is an edge incident to v, say vw'.

But then we know all edges incident to u or v, so we see that the edges uz and yv separate $A \cup \{u\}$ from $B \cup \{v\}$. This finishes Case 2.

Since $\kappa(G) = 2$, each of v, u has a neighbor in A and a neighbor in B, as in the picture. If $\kappa'(G) > 2$, then there is a third edge between A and $\{u, v\}$, say ux'. Similarly, there is a third edge between B and $\{u, v\}$. Since already know all edges incident to u, this is an edge incident to v, say vw'.

But then we know all edges incident to u or v, so we see that the edges uz and yv separate $A \cup \{u\}$ from $B \cup \{v\}$. This finishes Case 2.

Case 3: $\kappa(G) = 3$. By Theorem 4.2, $\kappa'(G) \le \delta(G) = 3$. So again the theorem holds.

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \ge 3$. Then *G* is 2-connected if and only if for each $u, v \in V(G)$ graph *G* has internally disjoint u, v-paths.

(ロ) (同) (三) (三) (三) (○) (○)

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \ge 3$. Then *G* is 2-connected if and only if for each $u, v \in V(G)$ graph *G* has internally disjoint u, v-paths.

Proof. Let $n \ge 3$.

(\Leftarrow) We prove the contrapositive. Suppose an *n*-vertex *G* is not 2-connected. Since $n \ge 3$, by Lemma 4.1 there is an $x \in V(G)$ such that G - x is disconnected. This means there is a partition $V(G) = \{x\} \cup A \cup B$ with $A \ne \emptyset$ and $B \ne \emptyset$ such that no edge connects *A* with *B*.

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \ge 3$. Then *G* is 2-connected if and only if for each $u, v \in V(G)$ graph *G* has internally disjoint u, v-paths.

Proof. Let $n \ge 3$.

(\Leftarrow) We prove the contrapositive. Suppose an *n*-vertex *G* is not 2-connected. Since $n \ge 3$, by Lemma 4.1 there is an $x \in V(G)$ such that G - x is disconnected. This means there is a partition $V(G) = \{x\} \cup A \cup B$ with $A \ne \emptyset$ and $B \ne \emptyset$ such that no edge connects *A* with *B*.

Let $a \in A$ and $b \in B$. Then each a, b-path in G contains x. Thus G has no internally disjoint a, b-paths.