Connectivity, II

Lecture 21

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \ge 3$. Then *G* is 2-connected if and only if for each $u, v \in V(G)$ graph *G* has internally disjoint u, v-paths.

(ロ) (同) (三) (三) (三) (○) (○)

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \ge 3$. Then *G* is 2-connected if and only if for each $u, v \in V(G)$ graph *G* has internally disjoint u, v-paths.

Proof. Let $n \ge 3$.

(\Leftarrow) We prove the contrapositive. Suppose an *n*-vertex *G* is not 2-connected. Since $n \ge 3$, by Lemma 4.1 there is an $x \in V(G)$ such that G - x is disconnected. This means there is a partition $V(G) = \{x\} \cup A \cup B$ with $A \ne \emptyset$ and $B \ne \emptyset$ such that no edge connects *A* with *B*.

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \ge 3$. Then *G* is 2-connected if and only if for each $u, v \in V(G)$ graph *G* has internally disjoint u, v-paths.

Proof. Let $n \ge 3$.

(\Leftarrow) We prove the contrapositive. Suppose an *n*-vertex *G* is not 2-connected. Since $n \ge 3$, by Lemma 4.1 there is an $x \in V(G)$ such that G - x is disconnected. This means there is a partition $V(G) = \{x\} \cup A \cup B$ with $A \ne \emptyset$ and $B \ne \emptyset$ such that no edge connects *A* with *B*.

Let $a \in A$ and $b \in B$. Then each a, b-path in G contains x. Thus G has no internally disjoint a, b-paths.

(\Rightarrow) Let *G* be 2-connected. We use induction on d(u, v).

Base of induction: d(u, v) = 1. Since $\kappa'(G) \ge \kappa(G) \ge 2$, G - uv is connected; thus it contains a u, v-path P. Another u, v-path is uv.

(\Rightarrow) Let *G* be 2-connected. We use induction on d(u, v).

Base of induction: d(u, v) = 1. Since $\kappa'(G) \ge \kappa(G) \ge 2$, G - uv is connected; thus it contains a u, v-path P. Another u, v-path is uv.

Induction Step. Suppose the theorem holds for all pairs of vertices at distance at most k - 1. Take any two vertices u and v s.t. d(u, v) = k. Let $P = v_0v_1 \dots v_k$ be a shortest path from $v_0 = u$ to $v_k = v$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

(\Rightarrow) Let *G* be 2-connected. We use induction on d(u, v).

Base of induction: d(u, v) = 1. Since $\kappa'(G) \ge \kappa(G) \ge 2$, G - uv is connected; thus it contains a u, v-path P. Another u, v-path is uv.

Induction Step. Suppose the theorem holds for all pairs of vertices at distance at most k - 1. Take any two vertices u and v s.t. d(u, v) = k. Let $P = v_0v_1 \dots v_k$ be a shortest path from $v_0 = u$ to $v_k = v$.

Then $d(u, v_{k-1}) = k - 1 < k$. So by induction, there are internally disjoint u, v_{k-1} -paths Q_1 and Q_2 . Note that $Q_1 \cup Q_2$ is a cycle.

Case 1: $v \in V(Q_1 \cup Q_2)$. Then on the cycle $Q_1 \cup Q_2$ we find internally disjoint u, v-paths.

Case 2: $v \notin V(Q_1 \cup Q_2)$. Since $\kappa(G) \ge 2$, $G - v_{k-1}$ has a path Q_0 from v to $V(Q_1 \cup Q_2) - v_{k-1}$, see below.

Using paths Q_0 , Q_1 , Q_2 and edge $v_{k-1}v$, we easily find two internally disjoint u, v-paths.

Lemma 4.5 (Expansion Lemma): Let G be k-connected and G' be obtained from G by adding a new vertex y adjacent to at least k vertices in G. Then G' is k-connected.

Proof. Since *G* is *k*-connected, $|V(G)| \ge k + 1$. Assume *G'* is not *k*-connected. Then there is a separating set $S \subset V(G')$ with $|S| \le k - 1$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Lemma 4.5 (Expansion Lemma): Let G be k-connected and G' be obtained from G by adding a new vertex y adjacent to at least k vertices in G. Then G' is k-connected.

Proof. Since *G* is *k*-connected, $|V(G)| \ge k + 1$. Assume *G'* is not *k*-connected. Then there is a separating set $S \subset V(G')$ with $|S| \le k - 1$.

Case 1: $y \in S$. Then S - y is a separating set in *G* and $|S - y| \le k - 2$, a contradiction.

Lemma 4.5 (Expansion Lemma): Let G be k-connected and G' be obtained from G by adding a new vertex y adjacent to at least k vertices in G. Then G' is k-connected.

Proof. Since *G* is *k*-connected, $|V(G)| \ge k + 1$. Assume *G'* is not *k*-connected. Then there is a separating set $S \subset V(G')$ with $|S| \le k - 1$.

Case 1: $y \in S$. Then S - y is a separating set in *G* and $|S - y| \le k - 2$, a contradiction.

Case 2: $y \notin S$. Let *A* be the vertex set of the component of G' - S containing *y* and B = V(G') - A - S. If $|A| \ge 2$, then *S* is a separating set in *G* and $|S| \le k - 1$, a contradiction.

So assume $A = \{y\}$. Then $S \supseteq N_{G'}(y)$, but $|N_{G'}(y)| \ge k$, a contradiction.

A characterization theorem

Theorem 4.6 (Characterization theorem of 2-connected graphs): Let *G* be a graph with $|V(G)| \ge 3$. The following conditions are equivalent:

(A) G is connected and has no cut vertices.

(B) $\forall x, y \in V(G)$, there are internally disjoint *x*, *y*-paths.

(C) $\forall x, y \in V(G)$, there is a cycle containing both x and y.

(D) $\delta(G) \ge 1$ and $\forall e, e' \in E(G)$, there is a cycle containing both *e* and *e'*.

(F) $\delta(G) \ge 2$ and $\forall e, e' \in E(G)$, there is a cycle containing both *e* and *e'*.

A characterization theorem

Theorem 4.6 (Characterization theorem of 2-connected graphs): Let *G* be a graph with $|V(G)| \ge 3$. The following conditions are equivalent:

(A) G is connected and has no cut vertices.

(B) $\forall x, y \in V(G)$, there are internally disjoint *x*, *y*-paths.

(C) $\forall x, y \in V(G)$, there is a cycle containing both x and y.

(D) $\delta(G) \ge 1$ and $\forall e, e' \in E(G)$, there is a cycle containing both *e* and *e'*.

(F) $\delta(G) \ge 2$ and $\forall e, e' \in E(G)$, there is a cycle containing both *e* and *e'*.

Proof. Theorem 4.4 proves $(A) \Leftrightarrow (B)$. Clearly, $(B) \Leftrightarrow (C)$ and $(F) \Rightarrow (D)$. To show (D) \Rightarrow (C), we prove ($^{\neg}C$) \Rightarrow ($^{\neg}D$)).

The negation of (C) means that there are vertices x and y not in a common cycle. If (D) holds, there is an edge e incident to xand an edge e' incident to y. Hence there is no cycle containing e and e'.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

To show (D) \Rightarrow (C), we prove ($^{\neg}$ C) \Rightarrow ($^{\neg}$ D)).

The negation of (C) means that there are vertices x and y not in a common cycle. If (D) holds, there is an edge e incident to xand an edge e' incident to y. Hence there is no cycle containing e and e'.

To finish the theorem we need only to show $(A) \Rightarrow (F)$.

Suppose *G* is connected and has no cut vertices. Then $\delta(G) \ge 2$. Now take any two edges, e = xy and e' = uv (possibily, x = u). Let *G'* by obtained from *G* by adding a new vertex *a* adjacent to *x* and *y* and a new vertex *b* adjacent to *u* and *v*. By the Expansion Lemma, *G'* is 2-connected.

To show (D) \Rightarrow (C), we prove ($^{\neg}$ C) \Rightarrow ($^{\neg}$ D)).

The negation of (C) means that there are vertices x and y not in a common cycle. If (D) holds, there is an edge e incident to xand an edge e' incident to y. Hence there is no cycle containing e and e'.

To finish the theorem we need only to show $(A) \Rightarrow (F)$.

Suppose *G* is connected and has no cut vertices. Then $\delta(G) \ge 2$. Now take any two edges, e = xy and e' = uv (possibily, x = u). Let *G'* by obtained from *G* by adding a new vertex *a* adjacent to *x* and *y* and a new vertex *b* adjacent to *u* and *v*. By the Expansion Lemma, *G'* is 2-connected.

By Whitney's Theorem, G' has a cycle C containing a and b. Then C must use edges xa, ay, ub and bv. Replacing these four edges with edges e and e', we obtain a cycle in Gcontaining e and e'. A subdivision of an edge *e* connecting vertices *u* and *v* in a graph *G* is the operation of replacing edge *e* with a path u, w, v through a new vertex *w*.

Corollary 4.7. If G is 2-connected, then the graph G' obtained by subdividing an edge of G also is 2-connected.

(ロ) (同) (三) (三) (三) (三) (○) (○)

A subdivision of an edge *e* connecting vertices *u* and *v* in a graph *G* is the operation of replacing edge *e* with a path u, w, v through a new vertex *w*.

Corollary 4.7. If G is 2-connected, then the graph G' obtained by subdividing an edge of G also is 2-connected.

Proof. Let *G'* be obtained from *G* by subdividing an edge *e* connecting vertices *u* and *v* with vertex *w*. Let $e_1 = uw$ and $e_2 = wv$.

We will prove that G' satisfies conditions (F) in Theorem 4.6.

Clearly, $\delta(G') = 2$. To prove that (F) holds for G', consider two arbitrary edges g and h.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A subdivision of an edge *e* connecting vertices *u* and *v* in a graph *G* is the operation of replacing edge *e* with a path u, w, v through a new vertex *w*.

Corollary 4.7. If G is 2-connected, then the graph G' obtained by subdividing an edge of G also is 2-connected.

Proof. Let *G'* be obtained from *G* by subdividing an edge *e* connecting vertices *u* and *v* with vertex *w*. Let $e_1 = uw$ and $e_2 = wv$.

We will prove that G' satisfies conditions (F) in Theorem 4.6.

Clearly, $\delta(G') = 2$. To prove that (F) holds for G', consider two arbitrary edges g and h.

Case 1: $\{g, h\} \cap \{e_1, e_2\} = \emptyset$. Since *G* is 2-connected, it contains a cycle *C* containing *g* and *h*. If $e \notin E(C)$, then *C* is a cycle in *G*' containing *g* and *h*.

Otherwise, cycle C' obtained from C by replacing e with e_1 and e_2 is a cycle in G' containing g and h.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Otherwise, cycle C' obtained from C by replacing e with e_1 and e_2 is a cycle in G' containing g and h.

Case 2: $|\{g, h\} \cap \{e_1, e_2\}| = 1$, say $g = e_1$ and $h \neq e_2$. Again, since *G* is 2-connected, it contains a cycle *C* containing *e* and *h*.

Then the cycle C' obtained from C by replacing e with e_1 and e_2 is a cycle in G' containing g and h.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Otherwise, cycle C' obtained from C by replacing e with e_1 and e_2 is a cycle in G' containing g and h.

Case 2: $|\{g, h\} \cap \{e_1, e_2\}| = 1$, say $g = e_1$ and $h \neq e_2$. Again, since *G* is 2-connected, it contains a cycle *C* containing *e* and *h*.

Then the cycle C' obtained from C by replacing e with e_1 and e_2 is a cycle in G' containing g and h.

Case 3: $\{g, h\} = \{e_1, e_2\}$. Again, *G* contains a cycle *C* containing *e*. Again, the cycle *C'* obtained from *C* by replacing *e* with e_1 and e_2 is a cycle in *G'* containing *g* and *h*.

(ロ) (同) (三) (三) (三) (三) (○) (○)

An ear in a graph G is a a path P connecting two vertices of degree at least 3 s.t. all internal vertices of P have degree 2 in G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

An ear in a graph G is a a path P connecting two vertices of degree at least 3 s.t. all internal vertices of P have degree 2 in G.

(ロ) (同) (三) (三) (三) (○) (○)

An ear decomposition of a graph *G* is a partition (P_0, P_1, \ldots, P_k) of the edge set of *G* s.t. (a) P_0 is a cycle of length at least 3, and (b) for $i = 1, \ldots, k$, P_i is an ear of $P_0 \cup P_1 \cup \ldots \cup P_i$.