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Two u, v-paths are internally disjoint, if they do not have
common internal vertices.

Theorem 4.4 (Whitney, 1932). Let |V(G)| > 3. Then Gis
2-connected if and only if for each u, v € V(G) graph G has
internally disjoint u, v-paths.
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Proof. Let n > 3.

(«<=) We prove the contrapositive. Suppose an n-vertex G is
not 2-connected. Since n > 3, by Lemma 4.1 there is an

x € V(G) such that G — x is disconnected. This means there is
a partition V(G) = {x} U AU B with A # () and B # () such that
no edge connects A with B.



Two u, v-paths are internally disjoint, if they do not have
common internal vertices.

Theorem 4.4 (Whitney, 1932). Let |V(G)| > 3. Then Gis
2-connected if and only if for each u, v € V(G) graph G has
internally disjoint u, v-paths.

Proof. Let n > 3.

(«<=) We prove the contrapositive. Suppose an n-vertex G is
not 2-connected. Since n > 3, by Lemma 4.1 there is an

x € V(G) such that G — x is disconnected. This means there is
a partition V(G) = {x} U AU B with A # () and B # () such that
no edge connects A with B.

Let a € Aand b € B. Then each a, b-path in G contains x.
Thus G has no internally disjoint a, b-paths.



(=) Let G be 2-connected. We use induction on d(u, v).

Base of induction: d(u, v) = 1. Since <'(G) > x(G) > 2,
G — uv is connected; thus it contains a u, v-path P. Another
u, v-path is uv.
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Induction Step. Suppose the theorem holds for all pairs of
vertices at distance at most kK — 1. Take any two vertices u and
vs.t d(u,v) = k. Let P= vvj ... v, be a shortest path from
Vo=utovg=v.



(=) Let G be 2-connected. We use induction on d(u, v).

Base of induction: d(u, v) = 1. Since x'(G) > x(G) > 2,
G — uv is connected; thus it contains a u, v-path P. Another
u, v-path is uv.

Induction Step. Suppose the theorem holds for all pairs of
vertices at distance at most kK — 1. Take any two vertices u and
vs.t d(u,v) = k. Let P= vvj ... v, be a shortest path from
Vo=utovg=v.

Then d(u, vk_1) = k — 1 < k. So by induction, there are
internally disjoint u, vi_{-paths Q; and Q.. Note that Q; U Qs is
acycle.

Case 1: v € V(Qq U Qo). Then on the cycle Q; U Q> we find
internally disjoint u, v-paths.



Case 2: v ¢ V(Qy U Q). Since k(G) > 2, G — vk_1 has a path
Qo from v to V(Q; U Qo) — vk_1, see below.

Q,

Q
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Using paths Qqy, Q, Q- and edge vi_1Vv, we easily find two
internally disjoint u, v-paths. O



Lemma 4.5 (Expansion Lemma): Let G be k-connected and G’
be obtained from G by adding a new vertex y adjacent to at
least k vertices in G. Then G’ is k-connected.

Proof. Since G is k-connected, |V(G)| > k + 1.
Assume G’ is not k-connected. Then there is a separating set
Sc V(@) with|S| < k—1.
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Case 1: y € S. Then S — y is a separating set in G and
|S — y| < k — 2, a contradiction.



Lemma 4.5 (Expansion Lemma): Let G be k-connected and G’
be obtained from G by adding a new vertex y adjacent to at
least k vertices in G. Then G’ is k-connected.

Proof. Since G is k-connected, |V(G)| > k + 1.
Assume G’ is not k-connected. Then there is a separating set
Sc V(@) with |[S| <k —1.

Case 1: y € S. Then S — y is a separating set in G and
|S — y| < k — 2, a contradiction.

Case 2: y ¢ S. Let A be the vertex set of the component of
G' — Scontainingy and B= V(G)—-A—S.If|A| > 2,then S
is a separating set in G and |S| < k — 1, a contradiction.

So assume A= {y}. Then S O Ng(y), but [Ng(y)| > k, a
contradiction. O



A characterization theorem

Theorem 4.6 (Characterization theorem of 2-connected
graphs): Let G be a graph with |V(G)| > 3. The following
conditions are equivalent:

(A) Gis connected and has no cut vertices.
(B) Vx, y € V(G), there are internally disjoint x, y-paths.
(C) vx,y € V(G), there is a cycle containing both x and y.

(D) 6(G) > 1 and Ve, € € E(G), there is a cycle containing both
eand €.

(F) 6(G) > 2 and Ve, € € E(G), there is a cycle containing both
eand €.



A characterization theorem

Theorem 4.6 (Characterization theorem of 2-connected
graphs): Let G be a graph with |V(G)| > 3. The following
conditions are equivalent:

(A) Gis connected and has no cut vertices.
(B) Vx, y € V(G), there are internally disjoint x, y-paths.
(C) vx,y € V(G), there is a cycle containing both x and y.

(D) 6(G) > 1 and Ve, € € E(G), there is a cycle containing both
eand €.

(F) 6(G) > 2 and Ve, € € E(G), there is a cycle containing both
eand €.

Proof. Theorem 4.4 proves (A) < (B).
Clearly, (B) < (C) and (F) = (D).



To show (D) = (C), we prove ("C) = ("D)).

The negation of (C) means that there are vertices x and y not
in a common cycle. If (D) holds, there is an edge e incident to x
and an edge €’ incident to y. Hence there is no cycle
containing e and €.



To show (D) = (C), we prove ("C) = ("D)).

The negation of (C) means that there are vertices x and y not
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To finish the theorem we need only to show (A) = (F).

Suppose G is connected and has no cut vertices. Then

5(G) > 2. Now take any two edges, e = xy and € = uv
(possibily, x = u). Let G’ by obtained from G by adding a new
vertex a adjacent to x and y and a new vertex b adjacent to u
and v. By the Expansion Lemma, G’ is 2-connected.



To show (D) = (C), we prove ("C) = ("D)).

The negation of (C) means that there are vertices x and y not
in a common cycle. If (D) holds, there is an edge e incident to x
and an edge €’ incident to y. Hence there is no cycle
containing e and €.

To finish the theorem we need only to show (A) = (F).

Suppose G is connected and has no cut vertices. Then

5(G) > 2. Now take any two edges, e = xy and € = uv
(possibily, x = u). Let G’ by obtained from G by adding a new
vertex a adjacent to x and y and a new vertex b adjacent to u
and v. By the Expansion Lemma, G’ is 2-connected.

By Whitney’s Theorem, G’ has a cycle C containing a and b.
Then C must use edges xa, ay, ub and bv. Replacing these
four edges with edges e and €/, we obtain a cycle in G
containing e and ¢€'. O



A subdivision of an edge e connecting vertices uand v in a
graph G is the operation of replacing edge e with a path u, w, v
through a new vertex w.

Corollary 4.7. If G is 2-connected , then the graph G’ obtained
by subdividing an edge of G also is 2-connected .
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Proof. Let G’ be obtained from G by subdividing an edge e
connecting vertices u and v with vertex w. Let e; = uw and
€ = Wv.

We will prove that G’ satisfies conditions (F) in Theorem 4.6.

Clearly, 6(G') = 2. To prove that (F) holds for G', consider two
arbitrary edges g and h.



A subdivision of an edge e connecting vertices uand v in a
graph G is the operation of replacing edge e with a path u, w, v
through a new vertex w.

Corollary 4.7. If G is 2-connected , then the graph G’ obtained
by subdividing an edge of G also is 2-connected .

Proof. Let G’ be obtained from G by subdividing an edge e
connecting vertices u and v with vertex w. Let e; = uw and
€ = Wv.

We will prove that G’ satisfies conditions (F) in Theorem 4.6.

Clearly, 6(G') = 2. To prove that (F) holds for G', consider two
arbitrary edges g and h.

Case 1: {g,h} N {ey, e} = 0. Since G is 2-connected , it
contains a cycle C containing g and h. If e ¢ E(C), then Cis a
cycle in G’ containing g and h.



Otherwise, cycle C’ obtained from C by replacing e with e; and
eo is a cycle in G’ containing g and h.



Otherwise, cycle C’ obtained from C by replacing e with e; and
eo is a cycle in G’ containing g and h.

Case 2: |{g,h} n{ey,ex}| =1, say g = e and h # e.. Again,
since G is 2-connected , it contains a cycle C containing e and
h.

Then the cycle C’ obtained from C by replacing e with e; and
&> is a cycle in G’ containing g and h.



Otherwise, cycle C’ obtained from C by replacing e with e; and
eo is a cycle in G’ containing g and h.

Case 2: |{g,h} n{ey,ex}| =1, say g = e and h # e.. Again,
since G is 2-connected , it contains a cycle C containing e and
h.

Then the cycle C’ obtained from C by replacing e with e; and
&> is a cycle in G’ containing g and h.

Case 3: {g, h} = {ey, ex}. Again, G contains a cycle C
containing e. Again, the cycle C’ obtained from C by replacing
e with e; and e is a cycle in G’ containing g and h. O



An ear in a graph G is a a path P connecting two vertices of
degree at least 3 s.t. all internal vertices of P have degree 2 in
G.



An ear in a graph G is a a path P connecting two vertices of
degree at least 3 s.t. all internal vertices of P have degree 2 in
G.

An ear decomposition of a graph G is a partition
(Po, Py, ..., Px) of the edge set of G s.1.

(a) Py is a cycle of length at least 3, and
(b)fori=1,...,k, Piisanearof PpUP;U...UP;.



