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Two u, v -paths are internally disjoint, if they do not have
common internal vertices.

Theorem 4.4 (Whitney, 1932). Let |V (G)| ≥ 3. Then G is
2-connected if and only if for each u, v ∈ V (G) graph G has
internally disjoint u, v -paths.

Proof. Let n ≥ 3.
(⇐) We prove the contrapositive. Suppose an n-vertex G is
not 2-connected. Since n ≥ 3, by Lemma 4.1 there is an
x ∈ V (G) such that G − x is disconnected. This means there is
a partition V (G) = {x} ∪ A ∪ B with A ̸= ∅ and B ̸= ∅ such that
no edge connects A with B.

Let a ∈ A and b ∈ B. Then each a,b-path in G contains x .
Thus G has no internally disjoint a,b-paths.
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(⇒) Let G be 2-connected. We use induction on d(u, v).

Base of induction: d(u, v) = 1. Since κ′(G) ≥ κ(G) ≥ 2,
G − uv is connected; thus it contains a u, v -path P. Another
u, v -path is uv .

Induction Step. Suppose the theorem holds for all pairs of
vertices at distance at most k − 1. Take any two vertices u and
v s.t. d(u, v) = k . Let P = v0v1 . . . vk be a shortest path from
v0 = u to vk = v .

Then d(u, vk−1) = k − 1 < k . So by induction, there are
internally disjoint u, vk−1-paths Q1 and Q2. Note that Q1 ∪ Q2 is
a cycle.

Case 1: v ∈ V (Q1 ∪ Q2). Then on the cycle Q1 ∪ Q2 we find
internally disjoint u, v -paths.
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Case 2: v /∈ V (Q1 ∪ Q2). Since κ(G) ≥ 2, G − vk−1 has a path
Q0 from v to V (Q1 ∪ Q2)− vk−1, see below.

Using paths Q0,Q1,Q2 and edge vk−1v , we easily find two
internally disjoint u, v -paths.



Lemma 4.5 (Expansion Lemma): Let G be k -connected and G′

be obtained from G by adding a new vertex y adjacent to at
least k vertices in G. Then G′ is k -connected.

Proof. Since G is k -connected, |V (G)| ≥ k + 1.
Assume G′ is not k -connected. Then there is a separating set
S ⊂ V (G′) with |S| ≤ k − 1.

Case 1: y ∈ S. Then S − y is a separating set in G and
|S − y | ≤ k − 2, a contradiction.

Case 2: y /∈ S. Let A be the vertex set of the component of
G′ − S containing y and B = V (G′)− A − S. If |A| ≥ 2, then S
is a separating set in G and |S| ≤ k − 1, a contradiction.

So assume A = {y}. Then S ⊇ NG′(y), but |NG′(y)| ≥ k , a
contradiction.
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A characterization theorem
Theorem 4.6 (Characterization theorem of 2-connected
graphs): Let G be a graph with |V (G)| ≥ 3. The following
conditions are equivalent:
(A) G is connected and has no cut vertices.

(B) ∀x , y ∈ V (G), there are internally disjoint x , y -paths.

(C) ∀x , y ∈ V (G), there is a cycle containing both x and y .

(D) δ(G) ≥ 1 and ∀e,e′ ∈ E(G), there is a cycle containing both
e and e′.

(F) δ(G) ≥ 2 and ∀e,e′ ∈ E(G), there is a cycle containing both
e and e′.

Proof. Theorem 4.4 proves (A) ⇔ (B).
Clearly, (B) ⇔ (C) and (F ) ⇒ (D) .
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To show (D) ⇒ (C), we prove (¬C) ⇒ (¬D)).

The negation of (C) means that there are vertices x and y not
in a common cycle. If (D) holds, there is an edge e incident to x
and an edge e′ incident to y . Hence there is no cycle
containing e and e′.

To finish the theorem we need only to show (A) ⇒ (F).

Suppose G is connected and has no cut vertices. Then
δ(G) ≥ 2. Now take any two edges, e = xy and e′ = uv
(possibily, x = u). Let G′ by obtained from G by adding a new
vertex a adjacent to x and y and a new vertex b adjacent to u
and v . By the Expansion Lemma, G′ is 2-connected.

By Whitney’s Theorem, G′ has a cycle C containing a and b.
Then C must use edges xa,ay ,ub and bv . Replacing these
four edges with edges e and e′, we obtain a cycle in G
containing e and e′.
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A subdivision of an edge e connecting vertices u and v in a
graph G is the operation of replacing edge e with a path u,w , v
through a new vertex w .

Corollary 4.7. If G is 2-connected , then the graph G′ obtained
by subdividing an edge of G also is 2-connected .

Proof. Let G′ be obtained from G by subdividing an edge e
connecting vertices u and v with vertex w . Let e1 = uw and
e2 = wv .

We will prove that G′ satisfies conditions (F) in Theorem 4.6.

Clearly, δ(G′) = 2. To prove that (F) holds for G′, consider two
arbitrary edges g and h.

Case 1: {g,h} ∩ {e1,e2} = ∅. Since G is 2-connected , it
contains a cycle C containing g and h. If e /∈ E(C), then C is a
cycle in G′ containing g and h.
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Otherwise, cycle C′ obtained from C by replacing e with e1 and
e2 is a cycle in G′ containing g and h.

Case 2: |{g,h} ∩ {e1,e2}| = 1, say g = e1 and h ̸= e2. Again,
since G is 2-connected , it contains a cycle C containing e and
h.
Then the cycle C′ obtained from C by replacing e with e1 and
e2 is a cycle in G′ containing g and h.

Case 3: {g,h} = {e1,e2}. Again, G contains a cycle C
containing e. Again, the cycle C′ obtained from C by replacing
e with e1 and e2 is a cycle in G′ containing g and h.
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An ear in a graph G is a a path P connecting two vertices of
degree at least 3 s.t. all internal vertices of P have degree 2 in
G.

An ear decomposition of a graph G is a partition
(P0,P1, . . . ,Pk ) of the edge set of G s.t.
(a) P0 is a cycle of length at least 3, and
(b) for i = 1, . . . , k , Pi is an ear of P0 ∪ P1 ∪ . . . ∪ Pi .
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