Connectivity, II

Lecture 21

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \geq 3$. Then G is 2-connected if and only if for each $u, v \in V(G)$ graph G has internally disjoint u, v-paths.

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \geq 3$. Then G is 2-connected if and only if for each $u, v \in V(G)$ graph G has internally disjoint u, v-paths.

Proof. Let $n \geq 3$.
$(\Leftarrow) \quad$ We prove the contrapositive. Suppose an n-vertex G is not 2 -connected. Since $n \geq 3$, by Lemma 4.1 there is an $x \in V(G)$ such that $G-x$ is disconnected. This means there is a partition $V(G)=\{x\} \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects A with B.

Two u, v-paths are internally disjoint, if they do not have common internal vertices.

Theorem 4.4 (Whitney, 1932). Let $|V(G)| \geq 3$. Then G is 2-connected if and only if for each $u, v \in V(G)$ graph G has internally disjoint u, v-paths.

Proof. Let $n \geq 3$.
$(\Leftarrow) \quad$ We prove the contrapositive. Suppose an n-vertex G is not 2 -connected. Since $n \geq 3$, by Lemma 4.1 there is an $x \in V(G)$ such that $G-x$ is disconnected. This means there is a partition $V(G)=\{x\} \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects A with B.

Let $a \in A$ and $b \in B$. Then each a, b-path in G contains x.
Thus G has no internally disjoint a, b-paths.
$(\Rightarrow) \quad$ Let G be 2-connected. We use induction on $d(u, v)$.
Base of induction: $d(u, v)=1$. Since $\kappa^{\prime}(G) \geq \kappa(G) \geq 2$, $G-u v$ is connected; thus it contains a u, v-path P. Another u, v-path is $u v$.
$(\Rightarrow) \quad$ Let G be 2-connected. We use induction on $d(u, v)$. Base of induction: $d(u, v)=1$. Since $\kappa^{\prime}(G) \geq \kappa(G) \geq 2$, $G-u v$ is connected; thus it contains a u, v-path P. Another u, v-path is $u v$.

Induction Step. Suppose the theorem holds for all pairs of vertices at distance at most $k-1$. Take any two vertices u and v s.t. $d(u, v)=k$. Let $P=v_{0} v_{1} \ldots v_{k}$ be a shortest path from $v_{0}=u$ to $v_{k}=v$.
$(\Rightarrow) \quad$ Let G be 2-connected. We use induction on $d(u, v)$.
Base of induction: $d(u, v)=1$. Since $\kappa^{\prime}(G) \geq \kappa(G) \geq 2$, $G-u v$ is connected; thus it contains a u, v-path P. Another u, v-path is $u v$.

Induction Step. Suppose the theorem holds for all pairs of vertices at distance at most $k-1$. Take any two vertices u and v s.t. $d(u, v)=k$. Let $P=v_{0} v_{1} \ldots v_{k}$ be a shortest path from $v_{0}=u$ to $v_{k}=v$.

Then $d\left(u, v_{k-1}\right)=k-1<k$. So by induction, there are internally disjoint u, v_{k-1}-paths Q_{1} and Q_{2}. Note that $Q_{1} \cup Q_{2}$ is a cycle.

Case 1: $v \in V\left(Q_{1} \cup Q_{2}\right)$. Then on the cycle $Q_{1} \cup Q_{2}$ we find internally disjoint u, v-paths.

Case 2: $v \notin V\left(Q_{1} \cup Q_{2}\right)$. Since $\kappa(G) \geq 2, G-v_{k-1}$ has a path Q_{0} from v to $V\left(Q_{1} \cup Q_{2}\right)-v_{k-1}$, see below.

Using paths Q_{0}, Q_{1}, Q_{2} and edge $v_{k-1} v$, we easily find two internally disjoint u, v-paths.

Lemma 4.5 (Expansion Lemma): Let G be k-connected and G^{\prime} be obtained from G by adding a new vertex y adjacent to at least k vertices in G. Then G^{\prime} is k-connected.

Proof. Since G is k-connected, $|V(G)| \geq k+1$.
Assume G^{\prime} is not k-connected. Then there is a separating set $S \subset V\left(G^{\prime}\right)$ with $|S| \leq k-1$.

Lemma 4.5 (Expansion Lemma): Let G be k-connected and G^{\prime} be obtained from G by adding a new vertex y adjacent to at least k vertices in G. Then G^{\prime} is k-connected.

Proof. Since G is k-connected, $|V(G)| \geq k+1$.
Assume G^{\prime} is not k-connected. Then there is a separating set $S \subset V\left(G^{\prime}\right)$ with $|S| \leq k-1$.

Case 1: $y \in S$. Then $S-y$ is a separating set in G and $|S-y| \leq k-2$, a contradiction.

Lemma 4.5 (Expansion Lemma): Let G be k-connected and G^{\prime} be obtained from G by adding a new vertex y adjacent to at least k vertices in G. Then G^{\prime} is k-connected.

Proof. Since G is k-connected, $|V(G)| \geq k+1$.
Assume G^{\prime} is not k-connected. Then there is a separating set $S \subset V\left(G^{\prime}\right)$ with $|S| \leq k-1$.

Case 1: $y \in S$. Then $S-y$ is a separating set in G and $|S-y| \leq k-2$, a contradiction.

Case 2: $y \notin S$. Let A be the vertex set of the component of $G^{\prime}-S$ containing y and $B=V\left(G^{\prime}\right)-A-S$. If $|A| \geq 2$, then S is a separating set in G and $|S| \leq k-1$, a contradiction.

So assume $A=\{y\}$. Then $S \supseteq N_{G^{\prime}}(y)$, but $\left|N_{G^{\prime}}(y)\right| \geq k$, a contradiction.

A characterization theorem

Theorem 4.6 (Characterization theorem of 2-connected graphs): Let G be a graph with $|V(G)| \geq 3$. The following conditions are equivalent:
(A) G is connected and has no cut vertices.
(B) $\forall x, y \in V(G)$, there are internally disjoint x, y-paths.
(C) $\forall x, y \in V(G)$, there is a cycle containing both x and y.
(D) $\delta(G) \geq 1$ and $\forall e, e^{\prime} \in E(G)$, there is a cycle containing both e and e^{\prime}.
(F) $\delta(G) \geq 2$ and $\forall e, e^{\prime} \in E(G)$, there is a cycle containing both e and e^{\prime}.

A characterization theorem

Theorem 4.6 (Characterization theorem of 2-connected graphs): Let G be a graph with $|V(G)| \geq 3$. The following conditions are equivalent:
(A) G is connected and has no cut vertices.
(B) $\forall x, y \in V(G)$, there are internally disjoint x, y-paths.
(C) $\forall x, y \in V(G)$, there is a cycle containing both x and y.
(D) $\delta(G) \geq 1$ and $\forall e, e^{\prime} \in E(G)$, there is a cycle containing both e and e^{\prime}.
(F) $\delta(G) \geq 2$ and $\forall e, e^{\prime} \in E(G)$, there is a cycle containing both e and e^{\prime}.

Proof. Theorem 4.4 proves $(A) \Leftrightarrow(B)$.
Clearly, $(B) \Leftrightarrow(C)$ and $(F) \Rightarrow(D)$.

To show $(D) \Rightarrow(C)$, we prove $(\neg C) \Rightarrow(\neg D))$.
The negation of (C) means that there are vertices x and y not in a common cycle. If (D) holds, there is an edge e incident to x and an edge e^{\prime} incident to y. Hence there is no cycle containing e and e^{\prime}.

To show $(D) \Rightarrow(C)$, we prove $(\neg C) \Rightarrow(\neg D))$.
The negation of (C) means that there are vertices x and y not in a common cycle. If (D) holds, there is an edge e incident to x and an edge e^{\prime} incident to y. Hence there is no cycle containing e and e^{\prime}.

To finish the theorem we need only to show $(A) \Rightarrow(F)$.
Suppose G is connected and has no cut vertices. Then $\delta(G) \geq 2$. Now take any two edges, $e=x y$ and $e^{\prime}=u v$ (possibily, $x=u$). Let G^{\prime} by obtained from G by adding a new vertex a adjacent to x and y and a new vertex b adjacent to u and v. By the Expansion Lemma, G^{\prime} is 2 -connected.

To show $(D) \Rightarrow(C)$, we prove $(\neg C) \Rightarrow(\neg D))$.
The negation of (C) means that there are vertices x and y not in a common cycle. If (D) holds, there is an edge e incident to x and an edge e^{\prime} incident to y. Hence there is no cycle containing e and e^{\prime}.

To finish the theorem we need only to show $(A) \Rightarrow(F)$.
Suppose G is connected and has no cut vertices. Then $\delta(G) \geq 2$. Now take any two edges, $e=x y$ and $e^{\prime}=u v$ (possibily, $x=u$). Let G^{\prime} by obtained from G by adding a new vertex a adjacent to x and y and a new vertex b adjacent to u and v. By the Expansion Lemma, G^{\prime} is 2 -connected.

By Whitney's Theorem, G^{\prime} has a cycle C containing a and b. Then C must use edges $x a, a y, u b$ and $b v$. Replacing these four edges with edges e and e^{\prime}, we obtain a cycle in G containing e and e^{\prime}.

A subdivision of an edge e connecting vertices u and v in a graph G is the operation of replacing edge e with a path u, w, v through a new vertex w.

Corollary 4.7. If G is 2 -connected, then the graph G^{\prime} obtained by subdividing an edge of G also is 2 -connected.

A subdivision of an edge e connecting vertices u and v in a graph G is the operation of replacing edge e with a path u, w, v through a new vertex w.

Corollary 4.7. If G is 2 -connected, then the graph G^{\prime} obtained by subdividing an edge of G also is 2 -connected.
Proof. Let G^{\prime} be obtained from G by subdividing an edge e connecting vertices u and v with vertex w. Let $e_{1}=u w$ and $e_{2}=w v$.
We will prove that G^{\prime} satisfies conditions (F) in Theorem 4.6.
Clearly, $\delta\left(G^{\prime}\right)=2$. To prove that (F) holds for G^{\prime}, consider two arbitrary edges g and h.

A subdivision of an edge e connecting vertices u and v in a graph G is the operation of replacing edge e with a path u, w, v through a new vertex w.

Corollary 4.7. If G is 2 -connected, then the graph G^{\prime} obtained by subdividing an edge of G also is 2 -connected.
Proof. Let G^{\prime} be obtained from G by subdividing an edge e connecting vertices u and v with vertex w. Let $e_{1}=u w$ and $e_{2}=w v$.
We will prove that G^{\prime} satisfies conditions (F) in Theorem 4.6.
Clearly, $\delta\left(G^{\prime}\right)=2$. To prove that (F) holds for G^{\prime}, consider two arbitrary edges g and h.

Case 1: $\{g, h\} \cap\left\{e_{1}, e_{2}\right\}=\emptyset$. Since G is 2 -connected , it contains a cycle C containing g and h. If $e \notin E(C)$, then C is a cycle in G^{\prime} containing g and h.

Otherwise, cycle C^{\prime} obtained from C by replacing e with e_{1} and e_{2} is a cycle in G^{\prime} containing g and h.

Otherwise, cycle C^{\prime} obtained from C by replacing e with e_{1} and e_{2} is a cycle in G^{\prime} containing g and h.

Case 2: $\left|\{g, h\} \cap\left\{e_{1}, e_{2}\right\}\right|=1$, say $g=e_{1}$ and $h \neq e_{2}$. Again, since G is 2 -connected, it contains a cycle C containing e and h.

Then the cycle C^{\prime} obtained from C by replacing e with e_{1} and e_{2} is a cycle in G^{\prime} containing g and h.

Otherwise, cycle C^{\prime} obtained from C by replacing e with e_{1} and e_{2} is a cycle in G^{\prime} containing g and h.

Case 2: $\left|\{g, h\} \cap\left\{e_{1}, e_{2}\right\}\right|=1$, say $g=e_{1}$ and $h \neq e_{2}$. Again, since G is 2 -connected, it contains a cycle C containing e and h.

Then the cycle C^{\prime} obtained from C by replacing e with e_{1} and e_{2} is a cycle in G^{\prime} containing g and h.

Case 3: $\{g, h\}=\left\{e_{1}, e_{2}\right\}$. Again, G contains a cycle C containing e. Again, the cycle C^{\prime} obtained from C by replacing e with e_{1} and e_{2} is a cycle in G^{\prime} containing g and h.

An ear in a graph G is a a path P connecting two vertices of degree at least 3 s.t. all internal vertices of P have degree 2 in G.

An ear in a graph G is a a path P connecting two vertices of degree at least 3 s.t. all internal vertices of P have degree 2 in G.

An ear decomposition of a graph G is a partition ($P_{0}, P_{1}, \ldots, P_{k}$) of the edge set of G s.t.
(a) P_{0} is a cycle of length at least 3 , and
(b) for $i=1, \ldots, k, P_{i}$ is an ear of $P_{0} \cup P_{1} \cup \ldots \cup P_{i}$.

