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A characterization theorem
Theorem 4.6 (Characterization theorem of 2-connected
graphs): Let G be a graph with |V (G)| ≥ 3. The following
conditions are equivalent:
(A) G is connected and has no cut vertices.

(B) ∀x , y ∈ V (G), there are internally disjoint x , y -paths.

(C) ∀x , y ∈ V (G), there is a cycle containing both x and y .

(D) δ(G) ≥ 1 and ∀e,e′ ∈ E(G), there is a cycle containing both
e and e′.

(F) δ(G) ≥ 2 and ∀e,e′ ∈ E(G), there is a cycle containing both
e and e′.

Corollary 4.7. If G is 2-connected , then the graph G′ obtained
by subdividing an edge of G also is 2-connected .



An ear in a graph G is a a path P connecting two vertices of
degree at least 3 s.t. all internal vertices of P have degree 2 in
G.

An ear decomposition of a graph G is a partition
(P0,P1, . . . ,Pk ) of the edge set of G s.t.
(a) P0 is a cycle of length at least 3, and
(b) for i = 1, . . . , k , Pi is an ear of P0 ∪ P1 ∪ . . . ∪ Pi .

Theorem 4.8. A graph G is 2-connected if and only if G has an
ear decomposition. Moreover, if G is 2-connected, then every
cycle in G of length at least 3 is the initial cycle in some ear
decomposition of G.

Proof. (⇐ ) Let (P0,P1, . . . ,Pk ) be an ear decomposition of a
graph G.

We prove the stronger statement that for each 0 ≤ i ≤ k ,
P0 ∪ P1 ∪ . . . ∪ Pi forms a 2-connected graph.
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This is true for i = 0 because every cycle of length at least 3 is
2-connected.

For induction step, observe that P0 ∪P1 ∪ . . .∪Pi is obtained by
adding path Pi to the 2-connected graph P0 ∪ P1 ∪ . . . ∪ Pi−1.

Note that adding a path can be considered as first adding an
edge, and then a sequence of subdivisions.

By Corollary 4.7 and the fact that adding an edge to a
2-connected graph results in a 2-connected graph,
P0 ∪ P1 ∪ . . . ∪ Pi is a 2-connected graph.

( ⇒ ) Let G be a 2-connected graph and C be a cycle in G of
length at least 3.
We let G0 = C and try to construct G1,G2, . . . so that for each
i ≥ 1, Gi is obtained from Gi−1 by adding a path whose end
vertices are in V (Gi−1), but internal vertices are not.
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Suppose Gi−1 is constructed. If Gi−1 = G, then we are done.
Suppose not. Then there exists an edge e ∈ E(G)− E(Gi−1)
s.t. at least one end of e is in V (Gi−1), say the ends of e are u
and v , and u ∈ V (Gi−1).

Let e′ be an edge in E(Gi−1) incident to u. By Part (F) of
Theorem 4.6, G has a cycle C containing e and e′.

Let P be the path in C starting from u, containing v and ending
at the first after u vertex of C that is in V (Gi−1).

Then internal vertices of P are not in V (Gi−1), so we let Gi be
obtained from Gi−1 by adding P.
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Main version of Menger’s Theorem
Let G be a graph or a digraph and x , y ∈ V (G) with xy /∈ E(G).
Then an x , y -cut is a set S ⊂ V (G)− {x , y} such that G − S
has no x , y -paths.
Define κG(x , y) be the minimum size of an x , y -cut in G.
Also, by λG(x , y) denote the maximum number of internally
disjoint x , y -paths in G.

Clearly, κG(x , y) ≥ λG(x , y).

Theorem 4.9 (Menger): Let G be a graph, x , y ∈ V (G) and
xy /∈ E(G). Then κG(x , y) = λG(x , y).

Proof. Assume the theorem does not hold. Then there is a
counterexample, i.e. a graph G and two vertices x , y ∈ V (G)
with xy /∈ E(G) such that

κG(x , y) > λG(x , y) (1)

with the minimum |V (G)|. Let n = |V (G)|.
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Proof setup
By the minimality of |V (G)|, for each H with |V (H)| < n

κH(u, v) = λH(u, v) for each u, v ∈ V (H) with uv /∈ E(H). (2)

Let k = κG(x , y). If k = 0, then also λG(x , y) = 0, and the
theorem holds. So assume k ≥ 1.

Since N(x) and N(y) are x , y -cuts,

k ≤ min{|N(x)|, |N(y)|}. (3)

In a series of claims below, we derive more and more

properties of G. Eventually, we will show that it does not exist.
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Claims and conclusion
Claim 1. Every x , y -cut with k vertices is N(x) or N(y).

Claim 2. V (G) = {x , y} ∪ N(x) ∪ N(y).

Claim 3. N(x) ∩ N(y) = ∅.

Claim 4. |N(x)| = |N(y)| = k .

Claim 5. Let H be the bipartite graph with parts N(x) and N(y)
such that u ∈ N(x) is adjacent to v ∈ N(y) iff uv ∈ E(G). Then
H has a perfect matching.

Since a perfect matching in H corresponds to k internally
disjoint x , y -paths in G, Claim 5 yields that λG(x , y) ≥ k , a
contradiction to (1).



Proof of Claim 1.

Suppose G has an x , y -cut S with k vertices distinct from N(x)
or N(y).

Let G′ be the component of G − S containing x . Let Gx be
obtained from G − G′ by adding the new vertex x ′ adjacent to
all vertices of S. Graph Gy is defined symmetrically, but instead
of G − G′ it uses G[S ∪ V (G′)].



Figure: Graphs Gx and Gy .

Since S does not contain N(x) or N(y), each of Gx and Gy is
smaller than G.

Any x ′, y -cut S′ in Gx is also an x , y -cut in G. It follows that
κGx (x

′, y) ≥ k . In view of S, it is exactly k . So by the minimality
of G, λGx (x

′, y) = k .
Similarly, λGy (x , y

′) = k .



Figure: Graphs Gx and Gy .

Since S does not contain N(x) or N(y), each of Gx and Gy is
smaller than G.
Any x ′, y -cut S′ in Gx is also an x , y -cut in G. It follows that
κGx (x

′, y) ≥ k . In view of S, it is exactly k . So by the minimality
of G, λGx (x

′, y) = k .
Similarly, λGy (x , y

′) = k .



Figure: Paths in graphs Gx and Gy .

Let P1, . . . ,Pk be int.-disjoint x ′, y -paths in Gx and Q1, . . . ,Qk
be int.-disjoint x , y ′-paths in Gy .



Then for every 1 ≤ i ≤ k , Ri = (Qi − y ′) ∪ (Pi − x ′) is an
x , y -path in G. Also, all R1, . . . ,Rk are int.-disjoint,
contradicting (1).

This proves Claim 1.



Proof of Claim 2: V (G) = {x , y} ∪ N(x) ∪ N(y).

Suppose G has a vertex z ∈ V (G)− ({x , y} ∪ N(x) ∪ N(y)). By
Claim 1, z does not belong to any x , y -cut of size k . This
means that for the graph G′ = G − z

κG′(x , y) = k .

By the minimality of G,

λG′(x , y) = κG′(x , y) = k .

So,
λG(x , y) ≥ λG′(x , y) = k ,

contradicting (1).



Proof of Claim 3: N(x) ∩ N(y) = ∅.
Suppose G has a vertex u ∈ N(x) ∩ N(y).
Let G′ = G − u. Then κG′(x , y) ≥ k − 1.

By the minimality of G, λG′(x , y) = κG′(x , y) ≥ k − 1. Let
P1, . . . ,Pk−1 be int.-disjoint x , y -paths in G′.
Adding to them path Pk = x ,u, y we obtain k int.-disjoint
x , y -paths in G. This contradicts (1).

Proof of Claim 4: |N(x)| = |N(y)| = k .
Suppose |N(x)| ≥ k + 1 and v ∈ N(x). Let G′ = G − v . By
Claim 1, v is not in any x , y -cut of size k .
Hence κG′(x , y) = k .
By the minimality of G, λG′(x , y) = κG′(x , y) = k . So,

λG(x , y) ≥ λG′(x , y) = k ,
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Proof of Claim 5: The auxiliary bigraph H has a perfect
matching.
Recall that H is the bipartite graph obtained from G by deleting
x and y and all edges inside N(x) and N(y). Also recall that by
Claim 4, |N(x)| = |N(y)| = k .

Suppose H has no perfect matching. By Hall’s Theorem, there
is A ⊆ N(x) such that |NH(A)| < |A|.
Then the set S = (N(x)− A) ∪ NH(A) is an x , y -cut in G.
But by the choice of A,

|S| = |N(x)− A|+ |NH(A)| = k − |A|+ |NH(A)| < k ,

contradicting the definition of k .

This proves Theorem 4.9.
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