Menger's Theorem

Lecture 22

A characterization theorem

Theorem 4.6 (Characterization theorem of 2-connected graphs): Let G be a graph with $|V(G)| \geq 3$. The following conditions are equivalent:
(A) G is connected and has no cut vertices.
(B) $\forall x, y \in V(G)$, there are internally disjoint x, y-paths.
(C) $\forall x, y \in V(G)$, there is a cycle containing both x and y.
(D) $\delta(G) \geq 1$ and $\forall e, e^{\prime} \in E(G)$, there is a cycle containing both e and e^{\prime}.
(F) $\delta(G) \geq 2$ and $\forall e, e^{\prime} \in E(G)$, there is a cycle containing both e and e^{\prime}.

Corollary 4.7. If G is 2 -connected, then the graph G^{\prime} obtained by subdividing an edge of G also is 2 -connected.

An ear in a graph G is a a path P connecting two vertices of degree at least 3 s.t. all internal vertices of P have degree 2 in G.

An ear in a graph G is a a path P connecting two vertices of degree at least 3 s.t. all internal vertices of P have degree 2 in G.

An ear decomposition of a graph G is a partition ($P_{0}, P_{1}, \ldots, P_{k}$) of the edge set of G s.t.
(a) P_{0} is a cycle of length at least 3 , and
(b) for $i=1, \ldots, k, P_{i}$ is an ear of $P_{0} \cup P_{1} \cup \ldots \cup P_{i}$.

An ear in a graph G is a a path P connecting two vertices of degree at least 3 s.t. all internal vertices of P have degree 2 in G.

An ear decomposition of a graph G is a partition $\left(P_{0}, P_{1}, \ldots, P_{k}\right)$ of the edge set of G s.t. (a) P_{0} is a cycle of length at least 3 , and (b) for $i=1, \ldots, k, P_{i}$ is an ear of $P_{0} \cup P_{1} \cup \ldots \cup P_{i}$.

Theorem 4.8. A graph G is 2-connected if and only if G has an ear decomposition. Moreover, if G is 2 -connected, then every cycle in G of length at least 3 is the initial cycle in some ear decomposition of G.

An ear in a graph G is a a path P connecting two vertices of degree at least 3 s.t. all internal vertices of P have degree 2 in G.

An ear decomposition of a graph G is a partition
$\left(P_{0}, P_{1}, \ldots, P_{k}\right)$ of the edge set of G s.t.
(a) P_{0} is a cycle of length at least 3 , and
(b) for $i=1, \ldots, k, P_{i}$ is an ear of $P_{0} \cup P_{1} \cup \ldots \cup P_{i}$.

Theorem 4.8. A graph G is 2-connected if and only if G has an ear decomposition. Moreover, if G is 2 -connected, then every cycle in G of length at least 3 is the initial cycle in some ear decomposition of G.

Proof. (\Leftarrow) Let $\left(P_{0}, P_{1}, \ldots, P_{k}\right)$ be an ear decomposition of a graph G.

We prove the stronger statement that for each $0 \leq i \leq k$, $P_{0} \cup P_{1} \cup \ldots \cup P_{i}$ forms a 2-connected graph.

This is true for $i=0$ because every cycle of length at least 3 is 2-connected.

For induction step, observe that $P_{0} \cup P_{1} \cup \ldots \cup P_{i}$ is obtained by adding path P_{i} to the 2 -connected graph $P_{0} \cup P_{1} \cup \ldots \cup P_{i-1}$.
Note that adding a path can be considered as first adding an edge, and then a sequence of subdivisions.

By Corollary 4.7 and the fact that adding an edge to a 2 -connected graph results in a 2-connected graph, $P_{0} \cup P_{1} \cup \ldots \cup P_{i}$ is a 2-connected graph.

This is true for $i=0$ because every cycle of length at least 3 is 2-connected.

For induction step, observe that $P_{0} \cup P_{1} \cup \ldots \cup P_{i}$ is obtained by adding path P_{i} to the 2-connected graph $P_{0} \cup P_{1} \cup \ldots \cup P_{i-1}$.
Note that adding a path can be considered as first adding an edge, and then a sequence of subdivisions.

By Corollary 4.7 and the fact that adding an edge to a 2-connected graph results in a 2-connected graph, $P_{0} \cup P_{1} \cup \ldots \cup P_{i}$ is a 2-connected graph.
(\Rightarrow) Let G be a 2-connected graph and C be a cycle in G of length at least 3.
We let $G_{0}=C$ and try to construct G_{1}, G_{2}, \ldots so that for each $i \geq 1, G_{i}$ is obtained from G_{i-1} by adding a path whose end vertices are in $V\left(G_{i-1}\right)$, but internal vertices are not.

Suppose G_{i-1} is constructed. If $G_{i-1}=G$, then we are done. Suppose not. Then there exists an edge $e \in E(G)-E\left(G_{i-1}\right)$ s.t. at least one end of e is in $V\left(G_{i-1}\right)$, say the ends of e are u and v, and $u \in V\left(G_{i-1}\right)$.

Suppose G_{i-1} is constructed. If $G_{i-1}=G$, then we are done. Suppose not. Then there exists an edge $e \in E(G)-E\left(G_{i-1}\right)$ s.t. at least one end of e is in $V\left(G_{i-1}\right)$, say the ends of e are u and v, and $u \in V\left(G_{i-1}\right)$.

Let e^{\prime} be an edge in $E\left(G_{i-1}\right)$ incident to u. By Part (F) of Theorem 4.6, G has a cycle C containing e and e^{\prime}.

Let P be the path in C starting from u, containing v and ending at the first after u vertex of C that is in $V\left(G_{i-1}\right)$.
Then internal vertices of P are not in $V\left(G_{i-1}\right)$, so we let G_{i} be obtained from G_{i-1} by adding P.

Main version of Menger's Theorem

Let G be a graph or a digraph and $x, y \in V(G)$ with $x y \notin E(G)$. Then an x, y-cut is a set $S \subset V(G)-\{x, y\}$ such that $G-S$ has no x, y-paths.
Define $\kappa_{G}(x, y)$ be the minimum size of an x, y-cut in G. Also, by $\lambda_{G}(x, y)$ denote the maximum number of internally disjoint x, y-paths in G.

Main version of Menger's Theorem

Let G be a graph or a digraph and $x, y \in V(G)$ with $x y \notin E(G)$. Then an x, y-cut is a set $S \subset V(G)-\{x, y\}$ such that $G-S$ has no x, y-paths.
Define $\kappa_{G}(x, y)$ be the minimum size of an x, y-cut in G. Also, by $\lambda_{G}(x, y)$ denote the maximum number of internally disjoint x, y-paths in G.

Clearly, $\kappa_{G}(x, y) \geq \lambda_{G}(x, y)$.
Theorem 4.9 (Menger): Let G be a graph, $x, y \in V(G)$ and $x y \notin E(G)$. Then $\kappa_{G}(x, y)=\lambda_{G}(x, y)$.

Main version of Menger's Theorem

Let G be a graph or a digraph and $x, y \in V(G)$ with $x y \notin E(G)$. Then an x, y-cut is a set $S \subset V(G)-\{x, y\}$ such that $G-S$ has no x, y-paths.
Define $\kappa_{G}(x, y)$ be the minimum size of an x, y-cut in G.
Also, by $\lambda_{G}(x, y)$ denote the maximum number of internally disjoint x, y-paths in G.

Clearly, $\kappa_{G}(x, y) \geq \lambda_{G}(x, y)$.
Theorem 4.9 (Menger): Let G be a graph, $x, y \in V(G)$ and $x y \notin E(G)$. Then $\kappa_{G}(x, y)=\lambda_{G}(x, y)$.
Proof. Assume the theorem does not hold. Then there is a counterexample, i.e. a graph G and two vertices $x, y \in V(G)$ with $x y \notin E(G)$ such that

$$
\begin{equation*}
\kappa_{G}(x, y)>\lambda_{G}(x, y) \tag{1}
\end{equation*}
$$

with the minimum $|V(G)|$. Let $n=|V(G)|$.

Proof setup

By the minimality of $|V(G)|$, for each H with $|V(H)|<n$
$\kappa_{H}(u, v)=\lambda_{H}(u, v)$ for each $u, v \in V(H)$ with $u v \notin E(H)$.

Proof setup

By the minimality of $|V(G)|$, for each H with $|V(H)|<n$

$$
\begin{equation*}
\kappa_{H}(u, v)=\lambda_{H}(u, v) \text { for each } u, v \in V(H) \text { with } u v \notin E(H) . \tag{2}
\end{equation*}
$$

Let $k=\kappa_{G}(x, y)$. If $k=0$, then also $\lambda_{G}(x, y)=0$, and the theorem holds. So assume $k \geq 1$.

Since $N(x)$ and $N(y)$ are x, y-cuts,

$$
\begin{equation*}
k \leq \min \{|N(x)|,|N(y)|\} \tag{3}
\end{equation*}
$$

Proof setup

By the minimality of $|V(G)|$, for each H with $|V(H)|<n$

$$
\begin{equation*}
\kappa_{H}(u, v)=\lambda_{H}(u, v) \text { for each } u, v \in V(H) \text { with } u v \notin E(H) \text {. } \tag{2}
\end{equation*}
$$

Let $k=\kappa_{G}(x, y)$. If $k=0$, then also $\lambda_{G}(x, y)=0$, and the theorem holds. So assume $k \geq 1$.

Since $N(x)$ and $N(y)$ are x, y-cuts,

$$
\begin{equation*}
k \leq \min \{|N(x)|,|N(y)|\} \tag{3}
\end{equation*}
$$

In a series of claims below, we derive more and more properties of G. Eventually, we will show that it does not exist.

Claims and conclusion

Claim 1. Every x, y-cut with k vertices is $N(x)$ or $N(y)$.
Claim 2. $V(G)=\{x, y\} \cup N(x) \cup N(y)$.
Claim 3. $N(x) \cap N(y)=\emptyset$.
Claim 4. $|N(x)|=|N(y)|=k$.
Claim 5. Let H be the bipartite graph with parts $N(x)$ and $N(y)$ such that $u \in N(x)$ is adjacent to $v \in N(y)$ iff $u v \in E(G)$. Then H has a perfect matching.

Since a perfect matching in H corresponds to k internally disjoint x, y-paths in G, Claim 5 yields that $\lambda_{G}(x, y) \geq k$, a contradiction to (1).

Proof of Claim 1.

Suppose G has an x, y-cut S with k vertices distinct from $N(x)$ or $N(y)$.

Let G^{\prime} be the component of $G-S$ containing x. Let G_{x} be obtained from $G-G^{\prime}$ by adding the new vertex x^{\prime} adjacent to all vertices of S. Graph G_{y} is defined symmetrically, but instead of $G-G^{\prime}$ it uses $G\left[S \cup V\left(G^{\prime}\right)\right]$.

Figure: Graphs G_{x} and G_{y}.
Since S does not contain $N(x)$ or $N(y)$, each of G_{x} and G_{y} is smaller than G.

Figure: Graphs G_{x} and G_{y}.
Since S does not contain $N(x)$ or $N(y)$, each of G_{x} and G_{y} is smaller than G.
Any x^{\prime}, y-cut S^{\prime} in G_{x} is also an x, y-cut in G. It follows that $\kappa_{G_{x}}\left(x^{\prime}, y\right) \geq k$. In view of S, it is exactly k. So by the minimality of $G, \lambda_{G_{x}}\left(x^{\prime}, y\right)=k$. Similarly, $\lambda_{G_{y}}\left(x, y^{\prime}\right)=k$.

Figure: Paths in graphs G_{x} and G_{y}.
Let P_{1}, \ldots, P_{k} be int.-disjoint x^{\prime}, y-paths in G_{x} and Q_{1}, \ldots, Q_{k} be int.-disjoint x, y^{\prime}-paths in G_{y}.

Then for every $1 \leq i \leq k, R_{i}=\left(Q_{i}-y^{\prime}\right) \cup\left(P_{i}-x^{\prime}\right)$ is an x, y-path in G. Also, all R_{1}, \ldots, R_{k} are int.-disjoint, contradicting (1).

This proves Claim 1.

Proof of Claim 2: $V(G)=\{x, y\} \cup N(x) \cup N(y)$.

Suppose G has a vertex $z \in V(G)-(\{x, y\} \cup N(x) \cup N(y))$. By Claim $1, z$ does not belong to any x, y-cut of size k. This means that for the graph $G^{\prime}=G-z$

$$
\kappa_{G^{\prime}}(x, y)=k .
$$

By the minimality of G,

$$
\lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y)=k .
$$

So,

$$
\lambda_{G}(x, y) \geq \lambda_{G^{\prime}}(x, y)=k
$$

contradicting (1).

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$.

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.

Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$. Let P_{1}, \ldots, P_{k-1} be int.-disjoint x, y-paths in G^{\prime}.
Adding to them path $P_{k}=x, u, y$ we obtain k int.-disjoint x, y-paths in G. This contradicts (1).

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$. Let P_{1}, \ldots, P_{k-1} be int.-disjoint x, y-paths in G^{\prime}.
Adding to them path $P_{k}=x, u, y$ we obtain k int.-disjoint x, y-paths in G. This contradicts (1).

Proof of Claim 4: $|N(x)|=|N(y)|=k$.
Suppose $|N(x)| \geq k+1$ and $v \in N(x)$. Let $G^{\prime}=G-v$.

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$. Let P_{1}, \ldots, P_{k-1} be int.-disjoint x, y-paths in G^{\prime}.
Adding to them path $P_{k}=x, u, y$ we obtain k int.-disjoint x, y-paths in G. This contradicts (1).

Proof of Claim 4: $|N(x)|=|N(y)|=k$.
Suppose $|N(x)| \geq k+1$ and $v \in N(x)$. Let $G^{\prime}=G-v$. By Claim $1, v$ is not in any x, y-cut of size k.

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$. Let P_{1}, \ldots, P_{k-1} be int.-disjoint x, y-paths in G^{\prime}.
Adding to them path $P_{k}=x, u, y$ we obtain k int.-disjoint x, y-paths in G. This contradicts (1).

Proof of Claim 4: $|N(x)|=|N(y)|=k$.
Suppose $|N(x)| \geq k+1$ and $v \in N(x)$. Let $G^{\prime}=G-v$. By Claim $1, v$ is not in any x, y-cut of size k. Hence $\kappa_{G^{\prime}}(x, y)=k$.

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$. Let
P_{1}, \ldots, P_{k-1} be int.-disjoint x, y-paths in G^{\prime}.
Adding to them path $P_{k}=x, u, y$ we obtain k int.-disjoint x, y-paths in G. This contradicts (1).

Proof of Claim 4: $|N(x)|=|N(y)|=k$.
Suppose $|N(x)| \geq k+1$ and $v \in N(x)$. Let $G^{\prime}=G-v$. By Claim $1, v$ is not in any x, y-cut of size k.
Hence $\kappa_{G^{\prime}}(x, y)=k$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y)=k$. So,

$$
\lambda_{G}(x, y) \geq \lambda_{G^{\prime}}(x, y)=k,
$$

contradicting (1).

Proof of Claim 5: The auxiliary bigraph H has a perfect matching.
Recall that H is the bipartite graph obtained from G by deleting x and y and all edges inside $N(x)$ and $N(y)$. Also recall that by Claim 4, $|N(x)|=|N(y)|=k$.

Proof of Claim 5: The auxiliary bigraph H has a perfect matching.
Recall that H is the bipartite graph obtained from G by deleting x and y and all edges inside $N(x)$ and $N(y)$. Also recall that by Claim 4, $|N(x)|=|N(y)|=k$.
Suppose H has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $\left|N_{H}(A)\right|<|A|$.

Proof of Claim 5: The auxiliary bigraph H has a perfect matching.
Recall that H is the bipartite graph obtained from G by deleting x and y and all edges inside $N(x)$ and $N(y)$. Also recall that by Claim 4, $|N(x)|=|N(y)|=k$.
Suppose H has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $\left|N_{H}(A)\right|<|A|$.
Then the set $S=(N(x)-A) \cup N_{H}(A)$ is an x, y-cut in G.

Proof of Claim 5: The auxiliary bigraph H has a perfect matching.
Recall that H is the bipartite graph obtained from G by deleting x and y and all edges inside $N(x)$ and $N(y)$. Also recall that by Claim 4, $|N(x)|=|N(y)|=k$.
Suppose H has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $\left|N_{H}(A)\right|<|A|$.
Then the set $S=(N(x)-A) \cup N_{H}(A)$ is an x, y-cut in G.
But by the choice of A,

$$
|S|=|N(x)-A|+\left|N_{H}(A)\right|=k-|A|+\left|N_{H}(A)\right|<k,
$$

contradicting the definition of k.

Proof of Claim 5: The auxiliary bigraph H has a perfect matching.
Recall that H is the bipartite graph obtained from G by deleting x and y and all edges inside $N(x)$ and $N(y)$. Also recall that by Claim 4, $|N(x)|=|N(y)|=k$.
Suppose H has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $\left|N_{H}(A)\right|<|A|$.
Then the set $S=(N(x)-A) \cup N_{H}(A)$ is an x, y-cut in G.
But by the choice of A,

$$
|S|=|N(x)-A|+\left|N_{H}(A)\right|=k-|A|+\left|N_{H}(A)\right|<k,
$$

contradicting the definition of k.
This proves Theorem 4.9.

