Menger’s Theorem

Lecture 22



A characterization theorem

Theorem 4.6 (Characterization theorem of 2-connected
graphs): Let G be a graph with |V(G)| > 3. The following
conditions are equivalent:

(A) Gis connected and has no cut vertices.
(B) Vx, y € V(G), there are internally disjoint x, y-paths.
(C) vx,y € V(G), there is a cycle containing both x and y.

(D) 6(G) > 1 and Ve, € € E(G), there is a cycle containing both
eand €.

(F) 6(G) > 2 and Ve, € € E(G), there is a cycle containing both
eand €.

Corollary 4.7. If G is 2-connected , then the graph G’ obtained
by subdividing an edge of G also is 2-connected .
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Theorem 4.8. A graph G is 2-connected if and only if G has an
ear decomposition. Moreover, if G is 2-connected, then every
cycle in G of length at least 3 is the initial cycle in some ear
decomposition of G.

Proof. (<) Let (Po, P4, ..., Px) be an ear decomposition of a
graph G.

We prove the stronger statement that for each 0 < i < k,
Py U Py U...U P, forms a 2-connected graph.
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For induction step, observe that Py U P; U. ..U P; is obtained by
adding path P; to the 2-connected graph Py U Py U ... U Pj_4.

Note that adding a path can be considered as first adding an
edge, and then a sequence of subdivisions.

By Corollary 4.7 and the fact that adding an edge to a
2-connected graph results in a 2-connected graph,
PoU Py U...U P;is a 2-connected graph.

(=) Let G be a 2-connected graph and C be a cycle in G of
length at least 3.

We let Gy = C and try to construct Gy, Go, . .. so that for each
i > 1, Gj is obtained from G;_4 by adding a path whose end
vertices are in V(Gj_1), but internal vertices are not.
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Suppose not. Then there exists an edge e € E(G) — E(G;_1)
s.t. at least one end of eisin V(G;_1), say the ends of e are u
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Suppose Gj_ is constructed. If G;_y = G, then we are done.
Suppose not. Then there exists an edge e € E(G) — E(G;_1)
s.t. at least one end of eisin V(G;_1), say the ends of e are u
and v, and u € V(Gj_4).

Let € be an edge in E(G;_1) incident to u. By Part (F) of
Theorem 4.6, G has a cycle C containing e and €.

Let P be the path in C starting from v, containing v and ending
at the first after u vertex of C thatis in V(G;_1).

Then internal vertices of P are notin V(G,_1), so we let G; be
obtained from G;_4 by adding P. O
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Define rg(x, y) be the minimum size of an x, y-cut in G.
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CIearlY: HG(X7y) > AG(va)'

Theorem 4.9 (Menger): Let G be a graph, x,y € V(G) and
xy ¢ E(G). Then rg(x. y) = Ag(x. ).

Proof. Assume the theorem does not hold. Then there is a
counterexample, i.e. a graph G and two vertices x, y € V(G)
with xy ¢ E(G) such that

KG(X7y)>)‘G(X7y) (1)
with the minimum |V(G)|. Let n = |V(G)|.
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By the minimality of |V(G)|, for each H with [V(H)| < n

rky(u,v) = Ay(u, v)foreach u,v € V(H) with uv ¢ E(H). (2)

Let k = rkg(x, y). If Kk =0, then also Ag(x, y) = 0, and the
theorem holds. So assume k > 1.

Since N(x) and N(y) are x, y-cuts,
k < min{|N(x)[, IN(y)I}. (3)
In a series of claims below, we derive more and more

properties of G. Eventually, we will show that it does not exist.



Claims and conclusion
Claim 1. Every x, y-cut with k vertices is N(x) or N(y).

Claim 2. V(G) = {x,y} UN(x) U N(y).
Claim 3. N(x) N N(y) = 0.

Claim 4. [N(x)| = IN(y)| = k.

Claim 5. Let H be the bipartite graph with parts N(x) and N(y)
such that u € N(x) is adjacentto v € N(y) iff uv € E(G). Then
H has a perfect matching.

Since a perfect matching in H corresponds to k internally
disjoint x, y-paths in G, Claim 5 yields that A\g(x,y) > k, a
contradiction to (1).



Proof of Claim 1.

Suppose G has an x, y-cut S with k vertices distinct from N(x)
or N(y).

Let G’ be the component of G — S containing x. Let Gy be
obtained from G — G’ by adding the new vertex x’ adjacent to

all vertices of S. Graph Gy, is defined symmetrically, but instead
of G— G ituses G[SU V(G)].
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Figure: Graphs Gy and Gy.
Since S does not contain N(x) or N(y), each of Gx and G, is
smaller than G.



Figure: Graphs Gy and Gy.
Since S does not contain N(x) or N(y), each of Gx and G, is
smaller than G.
Any X', y-cut S§"in Gy is also an x, y-cut in G. It follows that

kg, (X', y) > k. Inview of S, itis exactly k. So by the minimality
of G, \g, (X', y) = k.
Similarly, Ag, (X, y') = k.



Let Py,

Figure: Paths in graphs Gy and G.

., P, be int.-disjoint x’, y-paths in Gy and Qy,
be int.-disjoint x, y’-paths in G,.
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Thenforevery 1 <i<k, Ri=(Q -y )U(P;—x')isan
X, y-path in G. Also, all Ry,
contradicting (1).

., Ry are int.-disjoint,

This proves Claim 1.
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Proof of Claim 2: V(G) = {x,y} UN(x) UN(y).

Suppose G has avertex z € V(G) — ({x,y} UN(x)UN(y)). By
Claim 1, z does not belong to any x, y-cut of size k. This
means that for the graph G' = G — =

H’G’(X,y) =K.
By the minimality of G,
Aa (X, y) =ra(x,y) = k.

So,
)‘G(va) > )‘G/(X’y) = k7

contradicting (1).
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Proof of Claim 5: The auxiliary bigraph H has a perfect
matching.

Recall that H is the bipartite graph obtained from G by deleting
x and y and all edges inside N(x) and N(y). Also recall that by
Claim 4, [N(x)| = |[N(y)| = k.

Suppose H has no perfect matching. By Hall's Theorem, there
is A C N(x) such that [Ny(A)| < |A.

Then the set S = (N(x) — A) U Ny(A) is an x, y-cut in G.

But by the choice of A,

Sl = [N(x) — Al + [NH(A)| = k — |A| + [Nu(A)| <k,
contradicting the definition of k.

This proves Theorem 4.9.



