Menger's Theorem and its variations

Lecture 23

Main version of Menger's Theorem

Let *G* be a graph or a digraph and $x, y \in V(G)$ with $xy \notin E(G)$. Then an x, y-cut is a set $S \subset V(G) - \{x, y\}$ such that G - S has no x, y-paths. Define $\kappa_G(x, y)$ be the minimum size of an x, y-cut in *G*. Also, by $\lambda_G(x, y)$ denote the maximum number of internally disjoint x, y-paths in *G*.

Clearly, $\kappa_G(x, y) \geq \lambda_G(x, y)$.

Theorem 4.9 (Menger): Let *G* be a graph, $x, y \in V(G)$ and $xy \notin E(G)$. Then $\kappa_G(x, y) = \lambda_G(x, y)$.

Proof. Assume the theorem does not hold. Then there is a counterexample, i.e. a graph *G* and two vertices $x, y \in V(G)$ with $xy \notin E(G)$ such that

$$\kappa_{G}(\mathbf{x}, \mathbf{y}) > \lambda_{G}(\mathbf{x}, \mathbf{y}) \tag{1}$$

with the minimum |V(G)|. Let n = |V(G)|.

Proof setup

By the minimality of |V(G)|, for each H with |V(H)| < n

 $\kappa_H(u, v) = \lambda_H(u, v)$ for each $u, v \in V(H)$ with $uv \notin E(H)$. (2)

Let $k = \kappa_G(x, y)$. If k = 0, then also $\lambda_G(x, y) = 0$, and the theorem holds. So assume $k \ge 1$.

Since N(x) and N(y) are x, y-cuts,

$$k \leq \min\{|N(x)|, |N(y)|\}.$$
(3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In a series of claims below, we derive more and more

properties of G. Eventually, we will show that it does not exist.

Claims and conclusion

Claim 1. Every x, y-cut with k vertices is N(x) or N(y).

Claim 2. $V(G) = \{x, y\} \cup N(x) \cup N(y)$.

```
Claim 3. N(x) \cap N(y) = \emptyset.
```

Claim 4. |N(x)| = |N(y)| = k.

Claim 5. Let *H* be the bipartite graph with parts N(x) and N(y) such that $u \in N(x)$ is adjacent to $v \in N(y)$ iff $uv \in E(G)$. Then *H* has a perfect matching.

Since a perfect matching in *H* corresponds to *k* internally disjoint *x*, *y*-paths in *G*, Claim 5 yields that $\lambda_G(x, y) \ge k$, a contradiction to (1).

Proof of Claim 1.

Suppose G has an x, y-cut S with k vertices distinct from N(x) or N(y).

Let G' be the component of G - S containing x. Let G_x be obtained from G - G' by adding the new vertex x' adjacent to all vertices of S. Graph G_y is defined symmetrically, but instead of G - G' it uses $G[S \cup V(G')]$.

Figure: Graphs G_x and G_y .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Since *S* does not contain N(x) or N(y), each of G_x and G_y is smaller than *G*.

Figure: Graphs G_x and G_y .

Since *S* does not contain N(x) or N(y), each of G_x and G_y is smaller than *G*.

Any x', y-cut S' in G_x is also an x, y-cut in G. It follows that $\kappa_{G_x}(x', y) \ge k$. In view of S, it is exactly k. So by the minimality of G, $\lambda_{G_x}(x', y) = k$. Similarly, $\lambda_{G_y}(x, y') = k$.

(日) (日) (日) (日) (日) (日) (日)

Figure: Paths in graphs G_x and G_y .

(日)

Let P_1, \ldots, P_k be int.-disjoint x', y-paths in G_x and Q_1, \ldots, Q_k be int.-disjoint x, y'-paths in G_y .

Then for every $1 \le i \le k$, $R_i = (Q_i - y') \cup (P_i - x')$ is an x, y-path in G. Also, all R_1, \ldots, R_k are int.-disjoint, contradicting (1).

Figure: *x*, *y*-paths in *G*.

This success of the last of

Proof of Claim 2: $V(G) = \{x, y\} \cup N(x) \cup N(y)$.

Suppose *G* has a vertex $z \in V(G) - (\{x, y\} \cup N(x) \cup N(y))$. By Claim 1, *z* does not belong to any *x*, *y*-cut of size *k*. This means that for the graph G' = G - z

 $\kappa_{G'}(\mathbf{X},\mathbf{Y})=\mathbf{k}.$

By the minimality of G,

$$\lambda_{G'}(\mathbf{x},\mathbf{y}) = \kappa_{G'}(\mathbf{x},\mathbf{y}) = \mathbf{k}.$$

So,

$$\lambda_{G}(\boldsymbol{x},\boldsymbol{y}) \geq \lambda_{G'}(\boldsymbol{x},\boldsymbol{y}) = \boldsymbol{k},$$

(日) (日) (日) (日) (日) (日) (日)

contradicting (1).

Proof of Claim 3: $N(x) \cap N(y) = \emptyset$. Suppose *G* has a vertex $u \in N(x) \cap N(y)$. Let G' = G - u. Then $\kappa_{G'}(x, y) \ge k - 1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Proof of Claim 3: $N(x) \cap N(y) = \emptyset$. Suppose *G* has a vertex $u \in N(x) \cap N(y)$. Let G' = G - u. Then $\kappa_{G'}(x, y) \ge k - 1$. By the minimality of *G*, $\lambda_{G'}(x, y) = \kappa_{G'}(x, y) \ge k - 1$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Proof of Claim 4: |N(x)| = |N(y)| = k. Suppose $|N(x)| \ge k + 1$ and $v \in N(x)$. Let G' = G - v.

Proof of Claim 4: |N(x)| = |N(y)| = k. Suppose $|N(x)| \ge k + 1$ and $v \in N(x)$. Let G' = G - v. By Claim 1, v is not in any x, y-cut of size k.

Proof of Claim 4: |N(x)| = |N(y)| = k. Suppose $|N(x)| \ge k + 1$ and $v \in N(x)$. Let G' = G - v. By Claim 1, v is not in any x, y-cut of size k. Hence $\kappa_{G'}(x, y) = k$.

Proof of Claim 4: |N(x)| = |N(y)| = k. Suppose $|N(x)| \ge k + 1$ and $v \in N(x)$. Let G' = G - v. By Claim 1, v is not in any x, y-cut of size k. Hence $\kappa_{G'}(x, y) = k$. By the minimality of G, $\lambda_{G'}(x, y) = \kappa_{G'}(x, y) = k$. So,

$$\lambda_G(\mathbf{x},\mathbf{y}) \geq \lambda_{G'}(\mathbf{x},\mathbf{y}) = \mathbf{k}$$

contradicting (1).

Recall that *H* is the bipartite graph obtained from *G* by deleting *x* and *y* and all edges inside N(x) and N(y). Also recall that by Claim 4, |N(x)| = |N(y)| = k.

Recall that *H* is the bipartite graph obtained from *G* by deleting *x* and *y* and all edges inside N(x) and N(y). Also recall that by Claim 4, |N(x)| = |N(y)| = k.

Suppose *H* has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $|N_H(A)| < |A|$.

A D F A 同 F A E F A E F A Q A

Recall that *H* is the bipartite graph obtained from *G* by deleting *x* and *y* and all edges inside N(x) and N(y). Also recall that by Claim 4, |N(x)| = |N(y)| = k.

Suppose *H* has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $|N_H(A)| < |A|$.

Then the set $S = (N(x) - A) \cup N_H(A)$ is an x, y-cut in G.

Recall that *H* is the bipartite graph obtained from *G* by deleting *x* and *y* and all edges inside N(x) and N(y). Also recall that by Claim 4, |N(x)| = |N(y)| = k.

Suppose *H* has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $|N_H(A)| < |A|$. Then the set $S = (N(x) - A) \cup N_H(A)$ is an *x*, *y*-cut in *G*. But by the choice of *A*.

But by the choice of *A*,

$$|S| = |N(x) - A| + |N_H(A)| = k - |A| + |N_H(A)| < k$$

A D F A 同 F A E F A E F A Q A

contradicting the definition of *k*.

Recall that *H* is the bipartite graph obtained from *G* by deleting *x* and *y* and all edges inside N(x) and N(y). Also recall that by Claim 4, |N(x)| = |N(y)| = k.

Suppose *H* has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $|N_H(A)| < |A|$. Then the set $S = (N(x) - A) \cup N_H(A)$ is an *x*, *y*-cut in *G*. But by the choice of *A*,

 $|S| = |N(x) - A| + |N_H(A)| = k - |A| + |N_H(A)| < k$

contradicting the definition of k.

This proves Theorem 4.9.

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1.

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1.

Proof. Let *G* be a graph and $\kappa(G) = k$. Suppose that for some edge $e \in E(G)$,

$$\kappa(\boldsymbol{G}-\boldsymbol{e}) \leq \boldsymbol{k}-\boldsymbol{2}. \tag{4}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1.

Proof. Let *G* be a graph and $\kappa(G) = k$. Suppose that for some edge $e \in E(G)$,

$$\kappa(G-e) \le k-2. \tag{4}$$

A D F A 同 F A E F A E F A Q A

Let the ends of *e* be *x* and *y*. By definition, (4) means that there is $S \subset V(G - e)$ with $|S| \leq k - 2$ such that either (G - e) - S has at most 1 vertex or (G - e) - S is disconnected.

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1.

Proof. Let *G* be a graph and $\kappa(G) = k$. Suppose that for some edge $e \in E(G)$,

$$\kappa(G-e) \le k-2. \tag{4}$$

Let the ends of *e* be *x* and *y*. By definition, (4) means that there is $S \subset V(G - e)$ with $|S| \leq k - 2$ such that either (G - e) - S has at most 1 vertex or (G - e) - S is disconnected. In the former case, $|V(G - e)| \leq |S| + 1 \leq k - 1$.

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1.

Proof. Let *G* be a graph and $\kappa(G) = k$. Suppose that for some edge $e \in E(G)$,

$$\kappa(G-e) \le k-2. \tag{4}$$

Let the ends of *e* be *x* and *y*. By definition, (4) means that there is $S \subset V(G - e)$ with $|S| \leq k - 2$ such that either (G - e) - S has at most 1 vertex or (G - e) - S is disconnected. In the former case, $|V(G - e)| \leq |S| + 1 \leq k - 1$. But V(G - e) = V(G), and $|V(G)| \geq k + 1$, since *G* is *k*-connected, a contradiction.

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1.

Proof. Let *G* be a graph and $\kappa(G) = k$. Suppose that for some edge $e \in E(G)$,

$$\kappa(G-e) \le k-2. \tag{4}$$

Let the ends of *e* be *x* and *y*. By definition, (4) means that there is $S \subset V(G - e)$ with $|S| \leq k - 2$ such that either (G - e) - Shas at most 1 vertex or (G - e) - S is disconnected. In the former case, $|V(G - e)| \leq |S| + 1 \leq k - 1$. But V(G - e) = V(G), and $|V(G)| \geq k + 1$, since *G* is *k*-connected, a contradiction.

Thus (G - e) - S is disconnected, i.e., it has a vertex partition into *A* and *B* such that no edges connect *A* with *B* in (G - e) - S.

Since $|S| < k = \kappa(G)$, *S* is not separating in *G*. Hence, one of *x*, *y* is in *A* and the other in *B*. Say $x \in A$ and $y \in B$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Since $|S| < k = \kappa(G)$, *S* is not separating in *G*. Hence, one of *x*, *y* is in *A* and the other in *B*. Say $x \in A$ and $y \in B$. If there is $a \in A - x$, then $S \cup \{x\}$ separates A - x from *B*, a contradiction to the fact that $|S \cup \{x\}| = |S| + 1 < k$. So, $A = \{x\}$. Similarly, $B = \{y\}$.

Since $|S| < k = \kappa(G)$, *S* is not separating in *G*. Hence, one of *x*, *y* is in *A* and the other in *B*. Say $x \in A$ and $y \in B$. If there is $a \in A - x$, then $S \cup \{x\}$ separates A - x from *B*, a contradiction to the fact that $|S \cup \{x\}| = |S| + 1 < k$. So, $A = \{x\}$. Similarly, $B = \{y\}$. But then $|V(G)| = 2 + |S| \le k$, contradicting the fact that $\kappa(G) \le |V(G)| - 1$ for all *G*.

Since $|S| < k = \kappa(G)$, *S* is not separating in *G*. Hence, one of *x*, *y* is in *A* and the other in *B*. Say $x \in A$ and $y \in B$. If there is $a \in A - x$, then $S \cup \{x\}$ separates A - x from *B*, a contradiction to the fact that $|S \cup \{x\}| = |S| + 1 < k$. So, $A = \{x\}$. Similarly, $B = \{y\}$. But then $|V(G)| = 2 + |S| \le k$, contradicting the fact that $\kappa(G) \le |V(G)| - 1$ for all *G*.

Remark. The proof implies that if *e* is parallel to another edge, then $\kappa(G - e) = \kappa(G)$.

Global Menger's Theorem

The following theorem shows how *k*-connectedness refines itself.

Theorem 4.11 (Menger) : Suppose $n \ge k + 1$. Then an *n*-vertex graph *G* is *k*-connected if and only if $\lambda_G(x, y) \ge k$ for all distinct $x, y \in V(G)$.

Global Menger's Theorem

The following theorem shows how *k*-connectedness refines itself.

Theorem 4.11 (Menger) : Suppose $n \ge k + 1$. Then an *n*-vertex graph *G* is *k*-connected if and only if $\lambda_G(x, y) \ge k$ for all distinct $x, y \in V(G)$.

Proof. (\Leftarrow) We prove the contrapositive. Suppose an *n*-vertex *G* is not *k*-connected. Since $n \ge k + 1$, there is an $S \subseteq V(G)$ with $|S| \le k - 1$ such that G - S is disconnected. This means there is a partition $V(G) = S \cup A \cup B$ with $A \ne \emptyset$ and $B \ne \emptyset$ such that no edge connects *A* with *B*.

Global Menger's Theorem

The following theorem shows how *k*-connectedness refines itself.

Theorem 4.11 (Menger) : Suppose $n \ge k + 1$. Then an *n*-vertex graph *G* is *k*-connected if and only if $\lambda_G(x, y) \ge k$ for all distinct $x, y \in V(G)$.

Proof. (\Leftarrow) We prove the contrapositive. Suppose an *n*-vertex *G* is not *k*-connected. Since $n \ge k + 1$, there is an $S \subseteq V(G)$ with $|S| \le k - 1$ such that G - S is disconnected. This means there is a partition $V(G) = S \cup A \cup B$ with $A \ne \emptyset$ and $B \ne \emptyset$ such that no edge connects *A* with *B*.

Let $a \in A$ and $b \in B$. Then each a, b-path in G contains a vertex of S. Since $|S| \leq k - 1$, $\lambda_G(a, b) \leq k - 1$, as claimed.

Case 2: *G* has exactly s > 0 edges connecting *x* with *y*. Let these edges be e_1, \ldots, e_s .

Case 2: *G* has exactly s > 0 edges connecting *x* with *y*. Let these edges be e_1, \ldots, e_s . Consider $G' = G - \{e_1, \ldots, e_s\}$. By Lemma 4.10, $\kappa(G') \ge k - s$. Also $xy \notin E(G')$.

Case 2: *G* has exactly s > 0 edges connecting *x* with *y*. Let these edges be e_1, \ldots, e_s . Consider $G' = G - \{e_1, \ldots, e_s\}$. By Lemma 4.10, $\kappa(G') \ge k - s$. Also $xy \notin E(G')$.

So, Case 1 applies to G', and hence $\lambda_{G'}(x, y) \ge k - s$. Together with the *s* edges e_1, \ldots, e_s we get (k - s) + s = k int.-disjoint *x*, *y*-paths, as claimed.

Case 2: *G* has exactly s > 0 edges connecting *x* with *y*. Let these edges be e_1, \ldots, e_s . Consider $G' = G - \{e_1, \ldots, e_s\}$. By Lemma 4.10, $\kappa(G') \ge k - s$. Also $xy \notin E(G')$.

So, Case 1 applies to G', and hence $\lambda_{G'}(x, y) \ge k - s$. Together with the *s* edges e_1, \ldots, e_s we get (k - s) + s = k int.-disjoint *x*, *y*-paths, as claimed.

Remark. Condition $n \ge k + 1$ is important here. Indeed, consider the graph *G* obtained from C_3 by replacing each edge with 1000 multiple edges. Then the connectivity of *G* is 2, but for any two vertices $x, y \in E(G)$, $\lambda_G(x, y) = 1001$.