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Main version of Menger’s Theorem
Let G be a graph or a digraph and x , y ∈ V (G) with xy /∈ E(G).
Then an x , y -cut is a set S ⊂ V (G)− {x , y} such that G − S
has no x , y -paths.
Define κG(x , y) be the minimum size of an x , y -cut in G.
Also, by λG(x , y) denote the maximum number of internally
disjoint x , y -paths in G.

Clearly, κG(x , y) ≥ λG(x , y).

Theorem 4.9 (Menger): Let G be a graph, x , y ∈ V (G) and
xy /∈ E(G). Then κG(x , y) = λG(x , y).

Proof. Assume the theorem does not hold. Then there is a
counterexample, i.e. a graph G and two vertices x , y ∈ V (G)
with xy /∈ E(G) such that

κG(x , y) > λG(x , y) (1)

with the minimum |V (G)|. Let n = |V (G)|.



Proof setup
By the minimality of |V (G)|, for each H with |V (H)| < n

κH(u, v) = λH(u, v) for each u, v ∈ V (H) with uv /∈ E(H). (2)

Let k = κG(x , y). If k = 0, then also λG(x , y) = 0, and the
theorem holds. So assume k ≥ 1.

Since N(x) and N(y) are x , y -cuts,

k ≤ min{|N(x)|, |N(y)|}. (3)

In a series of claims below, we derive more and more

properties of G. Eventually, we will show that it does not exist.



Claims and conclusion
Claim 1. Every x , y -cut with k vertices is N(x) or N(y).

Claim 2. V (G) = {x , y} ∪ N(x) ∪ N(y).

Claim 3. N(x) ∩ N(y) = ∅.

Claim 4. |N(x)| = |N(y)| = k .

Claim 5. Let H be the bipartite graph with parts N(x) and N(y)
such that u ∈ N(x) is adjacent to v ∈ N(y) iff uv ∈ E(G). Then
H has a perfect matching.

Since a perfect matching in H corresponds to k internally
disjoint x , y -paths in G, Claim 5 yields that λG(x , y) ≥ k , a
contradiction to (1).



Proof of Claim 1.

Suppose G has an x , y -cut S with k vertices distinct from N(x)
or N(y).

Let G′ be the component of G − S containing x . Let Gx be
obtained from G − G′ by adding the new vertex x ′ adjacent to
all vertices of S. Graph Gy is defined symmetrically, but instead
of G − G′ it uses G[S ∪ V (G′)].



Figure: Graphs Gx and Gy .

Since S does not contain N(x) or N(y), each of Gx and Gy is
smaller than G.

Any x ′, y -cut S′ in Gx is also an x , y -cut in G. It follows that
κGx (x

′, y) ≥ k . In view of S, it is exactly k . So by the minimality
of G, λGx (x

′, y) = k .
Similarly, λGy (x , y

′) = k .
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Figure: Paths in graphs Gx and Gy .

Let P1, . . . ,Pk be int.-disjoint x ′, y -paths in Gx and Q1, . . . ,Qk
be int.-disjoint x , y ′-paths in Gy .



Then for every 1 ≤ i ≤ k , Ri = (Qi − y ′) ∪ (Pi − x ′) is an
x , y -path in G. Also, all R1, . . . ,Rk are int.-disjoint,
contradicting (1).

Figure: x , y -paths in G.

This proves Claim 1.



Proof of Claim 2: V (G) = {x , y} ∪ N(x) ∪ N(y).

Suppose G has a vertex z ∈ V (G)− ({x , y} ∪ N(x) ∪ N(y)). By
Claim 1, z does not belong to any x , y -cut of size k . This
means that for the graph G′ = G − z

κG′(x , y) = k .

By the minimality of G,

λG′(x , y) = κG′(x , y) = k .

So,
λG(x , y) ≥ λG′(x , y) = k ,

contradicting (1).



Proof of Claim 3: N(x) ∩ N(y) = ∅.
Suppose G has a vertex u ∈ N(x) ∩ N(y).
Let G′ = G − u. Then κG′(x , y) ≥ k − 1.

By the minimality of G, λG′(x , y) = κG′(x , y) ≥ k − 1. Let
P1, . . . ,Pk−1 be int.-disjoint x , y -paths in G′.
Adding to them path Pk = x ,u, y we obtain k int.-disjoint
x , y -paths in G. This contradicts (1).

Proof of Claim 4: |N(x)| = |N(y)| = k .
Suppose |N(x)| ≥ k + 1 and v ∈ N(x). Let G′ = G − v . By
Claim 1, v is not in any x , y -cut of size k .
Hence κG′(x , y) = k .
By the minimality of G, λG′(x , y) = κG′(x , y) = k . So,

λG(x , y) ≥ λG′(x , y) = k ,

contradicting (1).
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Proof of Claim 5: The auxiliary bigraph H has a perfect
matching.
Recall that H is the bipartite graph obtained from G by deleting
x and y and all edges inside N(x) and N(y). Also recall that by
Claim 4, |N(x)| = |N(y)| = k .

Suppose H has no perfect matching. By Hall’s Theorem, there
is A ⊆ N(x) such that |NH(A)| < |A|.
Then the set S = (N(x)− A) ∪ NH(A) is an x , y -cut in G.
But by the choice of A,

|S| = |N(x)− A|+ |NH(A)| = k − |A|+ |NH(A)| < k ,

contradicting the definition of k .

This proves Theorem 4.9.



Proof of Claim 5: The auxiliary bigraph H has a perfect
matching.
Recall that H is the bipartite graph obtained from G by deleting
x and y and all edges inside N(x) and N(y). Also recall that by
Claim 4, |N(x)| = |N(y)| = k .
Suppose H has no perfect matching. By Hall’s Theorem, there
is A ⊆ N(x) such that |NH(A)| < |A|.

Then the set S = (N(x)− A) ∪ NH(A) is an x , y -cut in G.
But by the choice of A,

|S| = |N(x)− A|+ |NH(A)| = k − |A|+ |NH(A)| < k ,

contradicting the definition of k .

This proves Theorem 4.9.



Proof of Claim 5: The auxiliary bigraph H has a perfect
matching.
Recall that H is the bipartite graph obtained from G by deleting
x and y and all edges inside N(x) and N(y). Also recall that by
Claim 4, |N(x)| = |N(y)| = k .
Suppose H has no perfect matching. By Hall’s Theorem, there
is A ⊆ N(x) such that |NH(A)| < |A|.
Then the set S = (N(x)− A) ∪ NH(A) is an x , y -cut in G.

But by the choice of A,

|S| = |N(x)− A|+ |NH(A)| = k − |A|+ |NH(A)| < k ,

contradicting the definition of k .

This proves Theorem 4.9.



Proof of Claim 5: The auxiliary bigraph H has a perfect
matching.
Recall that H is the bipartite graph obtained from G by deleting
x and y and all edges inside N(x) and N(y). Also recall that by
Claim 4, |N(x)| = |N(y)| = k .
Suppose H has no perfect matching. By Hall’s Theorem, there
is A ⊆ N(x) such that |NH(A)| < |A|.
Then the set S = (N(x)− A) ∪ NH(A) is an x , y -cut in G.
But by the choice of A,

|S| = |N(x)− A|+ |NH(A)| = k − |A|+ |NH(A)| < k ,

contradicting the definition of k .

This proves Theorem 4.9.



Proof of Claim 5: The auxiliary bigraph H has a perfect
matching.
Recall that H is the bipartite graph obtained from G by deleting
x and y and all edges inside N(x) and N(y). Also recall that by
Claim 4, |N(x)| = |N(y)| = k .
Suppose H has no perfect matching. By Hall’s Theorem, there
is A ⊆ N(x) such that |NH(A)| < |A|.
Then the set S = (N(x)− A) ∪ NH(A) is an x , y -cut in G.
But by the choice of A,

|S| = |N(x)− A|+ |NH(A)| = k − |A|+ |NH(A)| < k ,

contradicting the definition of k .

This proves Theorem 4.9.



A lemma
Lemma 4.10: Deletion of an edge from a graph decreases
connectivity by at most 1.

Proof. Let G be a graph and κ(G) = k . Suppose that for some
edge e ∈ E(G),

κ(G − e) ≤ k − 2. (4)

Let the ends of e be x and y . By definition, (4) means that there
is S ⊂ V (G − e) with |S| ≤ k − 2 such that either (G − e)− S
has at most 1 vertex or (G − e)− S is disconnected.
In the former case, |V (G − e)| ≤ |S|+ 1 ≤ k − 1. But
V (G − e) = V (G), and |V (G)| ≥ k + 1, since G is k -connected,
a contradiction.
Thus (G − e)− S is disconnected, i.e., it has a vertex partition
into A and B such that no edges connect A with B in
(G − e)− S.
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Since |S| < k = κ(G), S is not separating in G. Hence, one of
x , y is in A and the other in B. Say x ∈ A and y ∈ B.

If there is a ∈ A − x , then S ∪ {x} separates A − x from B, a
contradiction to the fact that |S ∪ {x}| = |S|+ 1 < k .
So, A = {x}. Similarly, B = {y}.
But then |V (G)| = 2 + |S| ≤ k , contradicting the fact that
κ(G) ≤ |V (G)| − 1 for all G.

Remark. The proof implies that if e is parallel to another edge,
then κ(G − e) = κ(G).



Since |S| < k = κ(G), S is not separating in G. Hence, one of
x , y is in A and the other in B. Say x ∈ A and y ∈ B.
If there is a ∈ A − x , then S ∪ {x} separates A − x from B, a
contradiction to the fact that |S ∪ {x}| = |S|+ 1 < k .
So, A = {x}. Similarly, B = {y}.

But then |V (G)| = 2 + |S| ≤ k , contradicting the fact that
κ(G) ≤ |V (G)| − 1 for all G.

Remark. The proof implies that if e is parallel to another edge,
then κ(G − e) = κ(G).



Since |S| < k = κ(G), S is not separating in G. Hence, one of
x , y is in A and the other in B. Say x ∈ A and y ∈ B.
If there is a ∈ A − x , then S ∪ {x} separates A − x from B, a
contradiction to the fact that |S ∪ {x}| = |S|+ 1 < k .
So, A = {x}. Similarly, B = {y}.
But then |V (G)| = 2 + |S| ≤ k , contradicting the fact that
κ(G) ≤ |V (G)| − 1 for all G.

Remark. The proof implies that if e is parallel to another edge,
then κ(G − e) = κ(G).



Since |S| < k = κ(G), S is not separating in G. Hence, one of
x , y is in A and the other in B. Say x ∈ A and y ∈ B.
If there is a ∈ A − x , then S ∪ {x} separates A − x from B, a
contradiction to the fact that |S ∪ {x}| = |S|+ 1 < k .
So, A = {x}. Similarly, B = {y}.
But then |V (G)| = 2 + |S| ≤ k , contradicting the fact that
κ(G) ≤ |V (G)| − 1 for all G.

Remark. The proof implies that if e is parallel to another edge,
then κ(G − e) = κ(G).



Global Menger’s Theorem
The following theorem shows how k -connectedness refines
itself.
Theorem 4.11 (Menger) : Suppose n ≥ k + 1. Then an n-vertex
graph G is k -connected if and only if λG(x , y) ≥ k for all distinct
x , y ∈ V (G).

Proof. (⇐) We prove the contrapositive. Suppose an
n-vertex G is not k -connected. Since n ≥ k + 1, there is an
S ⊆ V (G) with |S| ≤ k − 1 such that G − S is disconnected.
This means there is a partition V (G) = S ∪ A ∪ B with A ̸= ∅
and B ̸= ∅ such that no edge connects A with B.

Let a ∈ A and b ∈ B. Then each a,b-path in G contains a
vertex of S. Since |S| ≤ k − 1, λG(a,b) ≤ k − 1, as claimed.
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(⇒) Let G be k -connected. Take any distinct x , y ∈ V (G).
Case 1: xy /∈ E(G). Since G is k -connected, κG(x , y) ≥ k . So
by Theorem 4.9, λG(x , y) ≥ k .

Case 2: G has exactly s > 0 edges connecting x with y . Let
these edges be e1, . . . ,es.
Consider G′ = G − {e1, . . . ,es}. By Lemma 4.10,
κ(G′) ≥ k − s. Also xy /∈ E(G′).

So, Case 1 applies to G′, and hence λG′(x , y) ≥ k − s.
Together with the s edges e1, . . . ,es we get (k − s) + s = k
int.-disjoint x , y -paths, as claimed.

Remark. Condition n ≥ k + 1 is important here. Indeed,
consider the graph G obtained from C3 by replacing each edge
with 1000 multiple edges. Then the connectivity of G is 2, but
for any two vertices x , y ∈ E(G), λG(x , y) = 1001.
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