Menger's Theorem and its variations

Lecture 23

Main version of Menger's Theorem

Let G be a graph or a digraph and $x, y \in V(G)$ with $x y \notin E(G)$. Then an x, y-cut is a set $S \subset V(G)-\{x, y\}$ such that $G-S$ has no x, y-paths.
Define $\kappa_{G}(x, y)$ be the minimum size of an x, y-cut in G.
Also, by $\lambda_{G}(x, y)$ denote the maximum number of internally disjoint x, y-paths in G.

Clearly, $\kappa_{G}(x, y) \geq \lambda_{G}(x, y)$.
Theorem 4.9 (Menger): Let G be a graph, $x, y \in V(G)$ and $x y \notin E(G)$. Then $\kappa_{G}(x, y)=\lambda_{G}(x, y)$.
Proof. Assume the theorem does not hold. Then there is a counterexample, i.e. a graph G and two vertices $x, y \in V(G)$ with $x y \notin E(G)$ such that

$$
\begin{equation*}
\kappa_{G}(x, y)>\lambda_{G}(x, y) \tag{1}
\end{equation*}
$$

with the minimum $|V(G)|$. Let $n=|V(G)|$.

Proof setup

By the minimality of $|V(G)|$, for each H with $|V(H)|<n$

$$
\begin{equation*}
\kappa_{H}(u, v)=\lambda_{H}(u, v) \text { for each } u, v \in V(H) \text { with } u v \notin E(H) \text {. } \tag{2}
\end{equation*}
$$

Let $k=\kappa_{G}(x, y)$. If $k=0$, then also $\lambda_{G}(x, y)=0$, and the theorem holds. So assume $k \geq 1$.

Since $N(x)$ and $N(y)$ are x, y-cuts,

$$
\begin{equation*}
k \leq \min \{|N(x)|,|N(y)|\} \tag{3}
\end{equation*}
$$

In a series of claims below, we derive more and more properties of G. Eventually, we will show that it does not exist.

Claims and conclusion

Claim 1. Every x, y-cut with k vertices is $N(x)$ or $N(y)$.
Claim 2. $V(G)=\{x, y\} \cup N(x) \cup N(y)$.
Claim 3. $N(x) \cap N(y)=\emptyset$.
Claim 4. $|N(x)|=|N(y)|=k$.
Claim 5. Let H be the bipartite graph with parts $N(x)$ and $N(y)$ such that $u \in N(x)$ is adjacent to $v \in N(y)$ iff $u v \in E(G)$. Then H has a perfect matching.

Since a perfect matching in H corresponds to k internally disjoint x, y-paths in G, Claim 5 yields that $\lambda_{G}(x, y) \geq k$, a contradiction to (1).

Proof of Claim 1.

Suppose G has an x, y-cut S with k vertices distinct from $N(x)$ or $N(y)$.

Let G^{\prime} be the component of $G-S$ containing x. Let G_{x} be obtained from $G-G^{\prime}$ by adding the new vertex x^{\prime} adjacent to all vertices of S. Graph G_{y} is defined symmetrically, but instead of $G-G^{\prime}$ it uses $G\left[S \cup V\left(G^{\prime}\right)\right]$.

Figure: Graphs G_{x} and G_{y}.
Since S does not contain $N(x)$ or $N(y)$, each of G_{x} and G_{y} is smaller than G.

Figure: Graphs G_{x} and G_{y}.
Since S does not contain $N(x)$ or $N(y)$, each of G_{x} and G_{y} is smaller than G.
Any x^{\prime}, y-cut S^{\prime} in G_{x} is also an x, y-cut in G. It follows that $\kappa_{G_{x}}\left(x^{\prime}, y\right) \geq k$. In view of S, it is exactly k. So by the minimality of $G, \lambda_{G_{x}}\left(x^{\prime}, y\right)=k$. Similarly, $\lambda_{G_{y}}\left(x, y^{\prime}\right)=k$.

Figure: Paths in graphs G_{x} and G_{y}.
Let P_{1}, \ldots, P_{k} be int.-disjoint x^{\prime}, y-paths in G_{x} and Q_{1}, \ldots, Q_{k} be int.-disjoint x, y^{\prime}-paths in G_{y}.

Then for every $1 \leq i \leq k, R_{i}=\left(Q_{i}-y^{\prime}\right) \cup\left(P_{i}-x^{\prime}\right)$ is an x, y-path in G. Also, all R_{1}, \ldots, R_{k} are int.-disjoint, contradicting (1).

Figure: x, y-paths in G.

Proof of Claim 2: $V(G)=\{x, y\} \cup N(x) \cup N(y)$.

Suppose G has a vertex $z \in V(G)-(\{x, y\} \cup N(x) \cup N(y))$. By Claim $1, z$ does not belong to any x, y-cut of size k. This means that for the graph $G^{\prime}=G-z$

$$
\kappa_{G^{\prime}}(x, y)=k .
$$

By the minimality of G,

$$
\lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y)=k .
$$

So,

$$
\lambda_{G}(x, y) \geq \lambda_{G^{\prime}}(x, y)=k
$$

contradicting (1).

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$.

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.

Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$. Let P_{1}, \ldots, P_{k-1} be int.-disjoint x, y-paths in G^{\prime}.
Adding to them path $P_{k}=x, u, y$ we obtain k int.-disjoint x, y-paths in G. This contradicts (1).

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$. Let P_{1}, \ldots, P_{k-1} be int.-disjoint x, y-paths in G^{\prime}.
Adding to them path $P_{k}=x, u, y$ we obtain k int.-disjoint x, y-paths in G. This contradicts (1).

Proof of Claim 4: $|N(x)|=|N(y)|=k$.
Suppose $|N(x)| \geq k+1$ and $v \in N(x)$. Let $G^{\prime}=G-v$.

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$. Let P_{1}, \ldots, P_{k-1} be int.-disjoint x, y-paths in G^{\prime}.
Adding to them path $P_{k}=x, u, y$ we obtain k int.-disjoint x, y-paths in G. This contradicts (1).

Proof of Claim 4: $|N(x)|=|N(y)|=k$.
Suppose $|N(x)| \geq k+1$ and $v \in N(x)$. Let $G^{\prime}=G-v$. By Claim $1, v$ is not in any x, y-cut of size k.

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$. Let P_{1}, \ldots, P_{k-1} be int.-disjoint x, y-paths in G^{\prime}.
Adding to them path $P_{k}=x, u, y$ we obtain k int.-disjoint x, y-paths in G. This contradicts (1).

Proof of Claim 4: $|N(x)|=|N(y)|=k$.
Suppose $|N(x)| \geq k+1$ and $v \in N(x)$. Let $G^{\prime}=G-v$. By Claim $1, v$ is not in any x, y-cut of size k. Hence $\kappa_{G^{\prime}}(x, y)=k$.

Proof of Claim 3: $N(x) \cap N(y)=\emptyset$.
Suppose G has a vertex $u \in N(x) \cap N(y)$.
Let $G^{\prime}=G-u$. Then $\kappa_{G^{\prime}}(x, y) \geq k-1$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y) \geq k-1$. Let
P_{1}, \ldots, P_{k-1} be int.-disjoint x, y-paths in G^{\prime}.
Adding to them path $P_{k}=x, u, y$ we obtain k int.-disjoint x, y-paths in G. This contradicts (1).

Proof of Claim 4: $|N(x)|=|N(y)|=k$.
Suppose $|N(x)| \geq k+1$ and $v \in N(x)$. Let $G^{\prime}=G-v$. By Claim $1, v$ is not in any x, y-cut of size k.
Hence $\kappa_{G^{\prime}}(x, y)=k$.
By the minimality of $G, \lambda_{G^{\prime}}(x, y)=\kappa_{G^{\prime}}(x, y)=k$. So,

$$
\lambda_{G}(x, y) \geq \lambda_{G^{\prime}}(x, y)=k,
$$

contradicting (1).

Proof of Claim 5: The auxiliary bigraph H has a perfect matching.
Recall that H is the bipartite graph obtained from G by deleting x and y and all edges inside $N(x)$ and $N(y)$. Also recall that by Claim 4, $|N(x)|=|N(y)|=k$.

Proof of Claim 5: The auxiliary bigraph H has a perfect matching.
Recall that H is the bipartite graph obtained from G by deleting x and y and all edges inside $N(x)$ and $N(y)$. Also recall that by Claim 4, $|N(x)|=|N(y)|=k$.
Suppose H has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $\left|N_{H}(A)\right|<|A|$.

Proof of Claim 5: The auxiliary bigraph H has a perfect matching.
Recall that H is the bipartite graph obtained from G by deleting x and y and all edges inside $N(x)$ and $N(y)$. Also recall that by Claim 4, $|N(x)|=|N(y)|=k$.
Suppose H has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $\left|N_{H}(A)\right|<|A|$.
Then the set $S=(N(x)-A) \cup N_{H}(A)$ is an x, y-cut in G.

Proof of Claim 5: The auxiliary bigraph H has a perfect matching.
Recall that H is the bipartite graph obtained from G by deleting x and y and all edges inside $N(x)$ and $N(y)$. Also recall that by Claim 4, $|N(x)|=|N(y)|=k$.
Suppose H has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $\left|N_{H}(A)\right|<|A|$.
Then the set $S=(N(x)-A) \cup N_{H}(A)$ is an x, y-cut in G.
But by the choice of A,

$$
|S|=|N(x)-A|+\left|N_{H}(A)\right|=k-|A|+\left|N_{H}(A)\right|<k,
$$

contradicting the definition of k.

Proof of Claim 5: The auxiliary bigraph H has a perfect matching.
Recall that H is the bipartite graph obtained from G by deleting x and y and all edges inside $N(x)$ and $N(y)$. Also recall that by Claim 4, $|N(x)|=|N(y)|=k$.
Suppose H has no perfect matching. By Hall's Theorem, there is $A \subseteq N(x)$ such that $\left|N_{H}(A)\right|<|A|$.
Then the set $S=(N(x)-A) \cup N_{H}(A)$ is an x, y-cut in G.
But by the choice of A,

$$
|S|=|N(x)-A|+\left|N_{H}(A)\right|=k-|A|+\left|N_{H}(A)\right|<k,
$$

contradicting the definition of k.
This proves Theorem 4.9.

A lemma

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1.

A lemma

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1.

Proof. Let G be a graph and $\kappa(G)=k$. Suppose that for some edge $e \in E(G)$,

$$
\begin{equation*}
\kappa(G-e) \leq k-2 \tag{4}
\end{equation*}
$$

A lemma

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1 .

Proof. Let G be a graph and $\kappa(G)=k$. Suppose that for some edge $e \in E(G)$,

$$
\begin{equation*}
\kappa(G-e) \leq k-2 . \tag{4}
\end{equation*}
$$

Let the ends of e be x and y. By definition, (4) means that there is $S \subset V(G-e)$ with $|S| \leq k-2$ such that either $(G-e)-S$ has at most 1 vertex or $(G-e)-S$ is disconnected.

A lemma

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1 .

Proof. Let G be a graph and $\kappa(G)=k$. Suppose that for some edge $e \in E(G)$,

$$
\begin{equation*}
\kappa(G-e) \leq k-2 . \tag{4}
\end{equation*}
$$

Let the ends of e be x and y. By definition, (4) means that there is $S \subset V(G-e)$ with $|S| \leq k-2$ such that either $(G-e)-S$ has at most 1 vertex or $(G-e)-S$ is disconnected. In the former case, $|V(G-e)| \leq|S|+1 \leq k-1$.

A lemma

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1 .

Proof. Let G be a graph and $\kappa(G)=k$. Suppose that for some edge $e \in E(G)$,

$$
\begin{equation*}
\kappa(G-e) \leq k-2 . \tag{4}
\end{equation*}
$$

Let the ends of e be x and y. By definition, (4) means that there is $S \subset V(G-e)$ with $|S| \leq k-2$ such that either $(G-e)-S$ has at most 1 vertex or $(G-e)-S$ is disconnected. In the former case, $|V(G-e)| \leq|S|+1 \leq k-1$. But $V(G-e)=V(G)$, and $|V(G)| \geq k+1$, since G is k-connected, a contradiction.

A lemma

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1 .

Proof. Let G be a graph and $\kappa(G)=k$. Suppose that for some edge $e \in E(G)$,

$$
\begin{equation*}
\kappa(G-e) \leq k-2 . \tag{4}
\end{equation*}
$$

Let the ends of e be x and y. By definition, (4) means that there is $S \subset V(G-e)$ with $|S| \leq k-2$ such that either $(G-e)-S$ has at most 1 vertex or $(G-e)-S$ is disconnected. In the former case, $|V(G-e)| \leq|S|+1 \leq k-1$. But $V(G-e)=V(G)$, and $|V(G)| \geq k+1$, since G is k-connected, a contradiction.
Thus $(G-e)-S$ is disconnected, i.e., it has a vertex partition into A and B such that no edges connect A with B in $(G-e)-S$.

Since $|S|<k=\kappa(G), S$ is not separating in G. Hence, one of x, y is in A and the other in B. Say $x \in A$ and $y \in B$.

Since $|S|<k=\kappa(G), S$ is not separating in G. Hence, one of x, y is in A and the other in B. Say $x \in A$ and $y \in B$. If there is $a \in A-x$, then $S \cup\{x\}$ separates $A-x$ from B, a contradiction to the fact that $|S \cup\{x\}|=|S|+1<k$. So, $A=\{x\}$. Similarly, $B=\{y\}$.

Since $|S|<k=\kappa(G), S$ is not separating in G. Hence, one of x, y is in A and the other in B. Say $x \in A$ and $y \in B$.
If there is $a \in A-x$, then $S \cup\{x\}$ separates $A-x$ from B, a contradiction to the fact that $|S \cup\{x\}|=|S|+1<k$. So, $A=\{x\}$. Similarly, $B=\{y\}$. But then $|V(G)|=2+|S| \leq k$, contradicting the fact that $\kappa(G) \leq|V(G)|-1$ for all G.

Since $|S|<k=\kappa(G), S$ is not separating in G. Hence, one of x, y is in A and the other in B. Say $x \in A$ and $y \in B$. If there is $a \in A-x$, then $S \cup\{x\}$ separates $A-x$ from B, a contradiction to the fact that $|S \cup\{x\}|=|S|+1<k$. So, $A=\{x\}$. Similarly, $B=\{y\}$. But then $|V(G)|=2+|S| \leq k$, contradicting the fact that $\kappa(G) \leq|V(G)|-1$ for all G.

Remark. The proof implies that if e is parallel to another edge, then $\kappa(G-e)=\kappa(G)$.

Global Menger's Theorem

The following theorem shows how k-connectedness refines itself.
Theorem 4.11 (Menger) : Suppose $n \geq k+1$. Then an n-vertex graph G is k-connected if and only if $\lambda_{G}(x, y) \geq k$ for all distinct $x, y \in V(G)$.

Global Menger's Theorem

The following theorem shows how k-connectedness refines itself.
Theorem 4.11 (Menger) : Suppose $n \geq k+1$. Then an n-vertex graph G is k-connected if and only if $\lambda_{G}(x, y) \geq k$ for all distinct $x, y \in V(G)$.

Proof. $(\Leftarrow) \quad$ We prove the contrapositive. Suppose an n-vertex G is not k-connected. Since $n \geq k+1$, there is an $S \subseteq V(G)$ with $|S| \leq k-1$ such that $G-S$ is disconnected. This means there is a partition $V(G)=S \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects A with B.

Global Menger's Theorem

The following theorem shows how k-connectedness refines itself.
Theorem 4.11 (Menger) : Suppose $n \geq k+1$. Then an n-vertex graph G is k-connected if and only if $\lambda_{G}(x, y) \geq k$ for all distinct $x, y \in V(G)$.

Proof. $(\Leftarrow) \quad$ We prove the contrapositive. Suppose an n-vertex G is not k-connected. Since $n \geq k+1$, there is an $S \subseteq V(G)$ with $|S| \leq k-1$ such that $G-S$ is disconnected. This means there is a partition $V(G)=S \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects A with B.

Let $a \in A$ and $b \in B$. Then each a, b-path in G contains a vertex of S. Since $|S| \leq k-1, \lambda_{G}(a, b) \leq k-1$, as claimed.
$(\Rightarrow) \quad$ Let G be k-connected. Take any distinct $x, y \in V(G)$. Case 1: $x y \notin E(G)$. Since G is k-connected, $\kappa_{G}(x, y) \geq k$. So by Theorem 4.9, $\lambda_{G}(x, y) \geq k$.
$(\Rightarrow) \quad$ Let G be k-connected. Take any distinct $x, y \in V(G)$. Case 1: $x y \notin E(G)$. Since G is k-connected, $\kappa_{G}(x, y) \geq k$. So by Theorem 4.9, $\lambda_{G}(x, y) \geq k$.

Case 2: G has exactly $s>0$ edges connecting x with y. Let these edges be e_{1}, \ldots, e_{s}.
$(\Rightarrow) \quad$ Let G be k-connected. Take any distinct $x, y \in V(G)$. Case 1: $x y \notin E(G)$. Since G is k-connected, $\kappa_{G}(x, y) \geq k$. So by Theorem 4.9, $\lambda_{G}(x, y) \geq k$.

Case 2: G has exactly $s>0$ edges connecting x with y. Let these edges be e_{1}, \ldots, e_{s}.
Consider $G^{\prime}=G-\left\{e_{1}, \ldots, e_{s}\right\}$. By Lemma 4.10, $\kappa\left(G^{\prime}\right) \geq k-s$. Also xy $\notin E\left(G^{\prime}\right)$.
$(\Rightarrow) \quad$ Let G be k-connected. Take any distinct $x, y \in V(G)$. Case 1: $x y \notin E(G)$. Since G is k-connected, $\kappa_{G}(x, y) \geq k$. So by Theorem 4.9, $\lambda_{G}(x, y) \geq k$.

Case 2: G has exactly $s>0$ edges connecting x with y. Let these edges be e_{1}, \ldots, e_{s}.
Consider $G^{\prime}=G-\left\{e_{1}, \ldots, e_{s}\right\}$. By Lemma 4.10, $\kappa\left(G^{\prime}\right) \geq k-s$. Also $x y \notin E\left(G^{\prime}\right)$.

So, Case 1 applies to G^{\prime}, and hence $\lambda_{G^{\prime}}(x, y) \geq k-s$. Together with the s edges e_{1}, \ldots, e_{s} we get $(k-s)+s=k$ int.-disjoint x, y-paths, as claimed.
$(\Rightarrow) \quad$ Let G be k-connected. Take any distinct $x, y \in V(G)$.
Case 1: $x y \notin E(G)$. Since G is k-connected, $\kappa_{G}(x, y) \geq k$. So by Theorem 4.9, $\lambda_{G}(x, y) \geq k$.

Case 2: G has exactly $s>0$ edges connecting x with y. Let these edges be e_{1}, \ldots, e_{s}.
Consider $G^{\prime}=G-\left\{e_{1}, \ldots, e_{s}\right\}$. By Lemma 4.10, $\kappa\left(G^{\prime}\right) \geq k-s$. Also $x y \notin E\left(G^{\prime}\right)$.

So, Case 1 applies to G^{\prime}, and hence $\lambda_{G^{\prime}}(x, y) \geq k-s$. Together with the s edges e_{1}, \ldots, e_{s} we get $(k-s)+s=k$ int.-disjoint x, y-paths, as claimed.

Remark. Condition $n \geq k+1$ is important here. Indeed, consider the graph G obtained from C_{3} by replacing each edge with 1000 multiple edges. Then the connectivity of G is 2 , but for any two vertices $x, y \in E(G), \lambda_{G}(x, y)=1001$.

