Menger’'s Theorem and its variations,

Lecture 24



Theorem 4.9 (Menger): Let G be a graph, x,y € V(G) and
xy ¢ E(G). Then rg(x, y) = Ag(X. ).

Lemma 4.10: Deletion of an edge from a graph decreases
connectivity by at most 1.



Global Menger’s Theorem

The following theorem shows how k-connectedness refines
itself.

Theorem 4.11 (Menger) : Suppose n > k + 1. Then an n-vertex
graph Gis k-connected if and only if Ag(x, y) > k for all distinct
x,y € V(G).
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Proof. («) We prove the contrapositive. Suppose an
n-vertex G is not k-connected. Since n > k + 1, there is an
S C V(G) with |S| < k — 1 such that G — S is disconnected.
This means there is a partition V(G) = SUAU B with A # ()
and B # () such that no edge connects A with B.
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The following theorem shows how k-connectedness refines
itself.

Theorem 4.11 (Menger) : Suppose n > k + 1. Then an n-vertex
graph Gis k-connected if and only if Ag(x, y) > k for all distinct
x,y € V(G).

Proof. («) We prove the contrapositive. Suppose an
n-vertex G is not k-connected. Since n > k + 1, there is an
S C V(G) with |S| < k — 1 such that G — S is disconnected.
This means there is a partition V(G) = SUAU B with A # ()
and B # () such that no edge connects A with B.

Let a € Aand b € B. Then each a, b-path in G contains a
vertex of S. Since |S| < k — 1, Ag(a,b) < k — 1, as claimed.



(=) Let G be k-connected. Take any distinct x, y € V(G).
Case 1: xy ¢ E(G). Since G is k-connected, xg(x,y) > k. So
by Theorem 4.9, A\s(x,y) > k.
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(=) Let G be k-connected. Take any distinct x, y € V(G).
Case 1: xy ¢ E(G). Since G is k-connected, xg(x,y) > k. So
by Theorem 4.9, A\s(x,y) > k.

Case 2: G has exactly s > 0 edges connecting x with y. Let
these edges be ey, ..., €s.

Consider G' = G — {eq,...,es}. By Lemma 4.10,

k(G) >k —s. Also xy ¢ E(G).

So, Case 1 applies to G/, and hence \g/(x,y) > k — s.
Together with the s edges eq,...,eswe get (k —s) +s=k
int.-disjoint x, y-paths, as claimed.

Remark. Condition n > k + 1 is important here. Indeed,
consider the graph G obtained from C3 by replacing each edge
with 1000 multiple edges. Then the connectivity of G is 2, but
for any two vertices x,y € E(G), Ag(x,y) = 1001.



Edge version of Menger’s Theorem

Let G be a graph or a digraph and x, y € V(G). Then an

X, y-edge-cutis a set L ¢ E(G) such that G — L has no

x, y-paths. Define x;(x, y) be the minimum size of an

X, y-edge-cut in G.

Also, by \;(x, y) denote the maximum number of edge-disjoint
X, y-paths in G.
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Fans and Fan Lemma

Let G be a graph, U C V(G) and x € V(G) — U. Then an
x, U-fan of size k in G is a set of k paths from x to U such that
any two of them share only x.

Theorem 4.15 (Fan Lemma): Let n > k + 1. An n-vertex graph
G is k-connected if and only if for every choice U C V(G) with
|U| > kand x € V(G) — U, G has an x, U-fan of size k.

Proof. (=) Suppose G is k-connected, and U C V(G) with
|U| > k and x € V(G) — U are given. Let G’ be obtained from
G by adding a new vertex y adjacent to all vertices of U.

Since |U| > k, by Expansion Lemma, G’ is also k-connected.
So by Theorem 4.9 (or Theorem 4.11), G’ has k int.-disjoint

X, y-paths. When we remove y from each path, what remains is
an x, U-fan of size k. This proves (=)



(«<=) We use contrapositive. Suppose G is not k-connected.
Since n > k+ 1, thereisan S C V(G) with |S| = k — 1 such
that G — S is disconnected. This means there is a partition
V(G) = SUAU Bwith A # () and B # () such that no edge
connects A with B.



(«<=) We use contrapositive. Suppose G is not k-connected.
Since n > k+ 1, thereisan S C V(G) with |S| = k — 1 such
that G — S is disconnected. This means there is a partition
V(G) = SUAU B with A# () and B # () such that no edge
connects A with B.

Letac Aand b € B. Take U= SU B and x = a. Then each
x, U-path in G contains a vertex of S. Since |S| < k — 1, G has
no x, U-fan of size k, as claimed.



Definitions

For a digraph G= (V,E) and v € V, let E*(v) denote the set
of edges leaving v and £~ (v) — the set of edges entering v.

Anetwork G={V,E,s,t,c = {c(e)}eck} is a directed graph
(V, E) with a source vertex s, a sink vertex t, and a set of
non-negative capacities {c(e)}oc£ of edges.

A function f : E — Ris called a flow in G if for every vertex
veV-—-s—t,

divi(v)= > fle)— > f(e)=0. (1)

ecE+(v) ecE—(v)



Definitions

For a digraph G= (V,E) and v € V, let E*(v) denote the set
of edges leaving v and £~ (v) — the set of edges entering v.

Anetwork G={V,E,s,t,c = {c(e)}eck} is a directed graph
(V, E) with a source vertex s, a sink vertex t, and a set of
non-negative capacities {c(e)}oc£ of edges.

A function f : E — Ris called a flow in G if for every vertex
veV-—-s—t,

divi(v)= > fle)— > f(e)=0. (1)

ecE+(v) ecE—(v)

If 0 < f(e) < c(e) for every e € E, then the flow is called
feasible (for G).
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Consider >, . dive(Vv).
If f is a flow, then by (1) this sum equals div¢(s) + div¢(t).
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Simple properties

Consider >, . dive(Vv).
If f is a flow, then by (1) this sum equals div¢(s) + div¢(t).

On the other hand, every edge uv contributes f(uv) to

divi(uy= > fle)— > f(e)

ecE*(u) ecE—(u)

and —f(uv) to

divi(v)= > fle)— > f(e).

ecE*(v) ecE—(v)
Therefore, div¢(s) + dive(t) = 0. (x*)

The value M(f) = div¢(s) = —divs(t) is called the value of f.
A flow with value zero is called circulation.



More definitions and a lemma

By definition, each flow f is a vector satisfying a system of
linear equations and M(f) is a linear function of this vector.
So, for any flows f and g and any reals « and £,

M(af + Bg) = aM(f) + BM(g).



More definitions and a lemma

By definition, each flow f is a vector satisfying a system of
linear equations and M(f) is a linear function of this vector.
So, for any flows f and g and any reals « and £,

M(af + Bg) = aM(f) + BM(g). 2)

A flow f is positive if f(e) > 0 for every e € E and there exists
€ € E such that f(ep) > 0.

We say that a flow f is a flow along a (directed) cycle (or along
a (directed) s, t-path or t, s-path ) if f is non-zero only on the
edges of this cycle (s, t-path or t, s-path) and f(e) = f(¢€') for all
e, € in this cycle (s, t-path or t, s-path).

These flows are "simplest possible”. By definition, a flow along
a cycle is a circulation. It turns out that even most complicated
flows are sums of these simple flows.



Lemma 4.15. Every positive circulation f in a network G can be
represented as the sum of at most |E(G)| — 1 positive flows
along cycles.



Lemma 4.15. Every positive circulation f in a network G can be
represented as the sum of at most |E(G)| — 1 positive flows
along cycles.

Proof. We use induction on the number m of the edges of G.
The minimum possible number of edges is 2, and the only
possible positive circulation with two edges is below.

Figure: Circulation with 2 edges.

Suppose the lemma holds for all circulations in networks with
fewer than m edges, and let f be a positive circulation in a
network G with m edges.
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If f(ep) = O for some gy € E, then consider Gy = G — ey and
fo = f |g,- By the minimality of G, f is the sum of at most
|[E(Go)| — 1 = m — 2 positive flows along cycles. So, f is the
sum of the same flows.



If f(ep) = O for some gy € E, then consider Gy = G — ey and
fo = f |g,- By the minimality of G, f is the sum of at most
|[E(Go)| — 1 = m — 2 positive flows along cycles. So, f is the
sum of the same flows.

Thus we may assume that f(e) > 0 for every e € E. Consider
an arbitrary e; = vgv4 € E. Since f is a circulation, there is an
edge e> = vy v leaving v4. Similarly, there exists an edge

e3 = VoV leaving v», and so on.



If f(ep) = O for some gy € E, then consider Gy = G — ¢y and
fo = f |g,- By the minimality of G, f is the sum of at most
|E(Gp)| — 1 = m— 2 positive flows along cycles. So, fis the
sum of the same flows.

Thus we may assume that f(e) > 0 for every e € E. Consider
an arbitrary e; = vgv4 € E. Since f is a circulation, there is an
edge e> = vy v leaving v4. Similarly, there exists an edge

e3 = VoV leaving v», and so on.
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Let k be the minimum positive integer such that
Vk € {v,..., Vx_1}. For definiteness, let vx = vs. Then
C=VsVsiq...Vk_qVgisacyclein G.




Let p = min{f(e) | e € E(C)}, and (C, p) be the flow along C

of size p.
Consider f; = f — p(C, p). If f{ =0, then f is the sum of one

flow along a cycle (namely, along C).



Let p = min{f(e) | e € E(C)}, and ¢(C, p) be the flow along C
of size p.

Consider f; = f — p(C, p). If f{ =0, then f is the sum of one
flow along a cycle (namely, along C).

Otherwise, f; is a positive flow and there exists e; € E(C) with
fi (61) =0.

Due to the minimality of G, the flow f; |g_¢, can be represented
as the sum of at most |[E(G — e1)| — 1 = |E(G)| — 2 positive
flows along cycles.



Let p = min{f(e) | e € E(C)}, and ¢(C, p) be the flow along C
of size p.

Consider f; = f — p(C, p). If f{ =0, then f is the sum of one
flow along a cycle (namely, along C).

Otherwise, f; is a positive flow and there exists e; € E(C) with
fi (61) =0.

Due to the minimality of G, the flow f; |g_¢, can be represented
as the sum of at most |[E(G — e1)| — 1 = |E(G)| — 2 positive
flows along cycles.

Adding ¢(C, p) to this sum, we find a representation for f, as
claimed.
This proves the lemma.



