Menger's Theorem and its variations, II

Lecture 24

Theorem 4.9 (Menger): Let *G* be a graph, $x, y \in V(G)$ and $xy \notin E(G)$. Then $\kappa_G(x, y) = \lambda_G(x, y)$.

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Global Menger's Theorem

The following theorem shows how *k*-connectedness refines itself.

Theorem 4.11 (Menger) : Suppose $n \ge k + 1$. Then an *n*-vertex graph *G* is *k*-connected if and only if $\lambda_G(x, y) \ge k$ for all distinct $x, y \in V(G)$.

Global Menger's Theorem

The following theorem shows how *k*-connectedness refines itself.

Theorem 4.11 (Menger) : Suppose $n \ge k + 1$. Then an *n*-vertex graph *G* is *k*-connected if and only if $\lambda_G(x, y) \ge k$ for all distinct $x, y \in V(G)$.

Proof. (\Leftarrow) We prove the contrapositive. Suppose an *n*-vertex *G* is not *k*-connected. Since $n \ge k + 1$, there is an $S \subseteq V(G)$ with $|S| \le k - 1$ such that G - S is disconnected. This means there is a partition $V(G) = S \cup A \cup B$ with $A \ne \emptyset$ and $B \ne \emptyset$ such that no edge connects *A* with *B*.

Global Menger's Theorem

The following theorem shows how *k*-connectedness refines itself.

Theorem 4.11 (Menger) : Suppose $n \ge k + 1$. Then an *n*-vertex graph *G* is *k*-connected if and only if $\lambda_G(x, y) \ge k$ for all distinct $x, y \in V(G)$.

Proof. (\Leftarrow) We prove the contrapositive. Suppose an *n*-vertex *G* is not *k*-connected. Since $n \ge k + 1$, there is an $S \subseteq V(G)$ with $|S| \le k - 1$ such that G - S is disconnected. This means there is a partition $V(G) = S \cup A \cup B$ with $A \ne \emptyset$ and $B \ne \emptyset$ such that no edge connects *A* with *B*.

Let $a \in A$ and $b \in B$. Then each a, b-path in G contains a vertex of S. Since $|S| \le k - 1$, $\lambda_G(a, b) \le k - 1$, as claimed.

Case 2: *G* has exactly s > 0 edges connecting *x* with *y*. Let these edges be e_1, \ldots, e_s .

Case 2: *G* has exactly s > 0 edges connecting *x* with *y*. Let these edges be e_1, \ldots, e_s . Consider $G' = G - \{e_1, \ldots, e_s\}$. By Lemma 4.10, $\kappa(G') \ge k - s$. Also $xy \notin E(G')$.

Case 2: *G* has exactly s > 0 edges connecting *x* with *y*. Let these edges be e_1, \ldots, e_s . Consider $G' = G - \{e_1, \ldots, e_s\}$. By Lemma 4.10, $\kappa(G') \ge k - s$. Also $xy \notin E(G')$.

So, Case 1 applies to G', and hence $\lambda_{G'}(x, y) \ge k - s$. Together with the *s* edges e_1, \ldots, e_s we get (k - s) + s = k int.-disjoint *x*, *y*-paths, as claimed.

Case 2: *G* has exactly s > 0 edges connecting *x* with *y*. Let these edges be e_1, \ldots, e_s . Consider $G' = G - \{e_1, \ldots, e_s\}$. By Lemma 4.10, $\kappa(G') \ge k - s$. Also $xy \notin E(G')$.

So, Case 1 applies to G', and hence $\lambda_{G'}(x, y) \ge k - s$. Together with the *s* edges e_1, \ldots, e_s we get (k - s) + s = k int.-disjoint *x*, *y*-paths, as claimed.

Remark. Condition $n \ge k + 1$ is important here. Indeed, consider the graph *G* obtained from C_3 by replacing each edge with 1000 multiple edges. Then the connectivity of *G* is 2, but for any two vertices $x, y \in E(G)$, $\lambda_G(x, y) = 1001$.

Let *G* be a graph or a digraph and $x, y \in V(G)$. Then an x, y-edge-cut is a set $L \subset E(G)$ such that G - L has no x, y-paths. Define $\kappa'_G(x, y)$ be the minimum size of an x, y-edge-cut in *G*. Also, by $\lambda'_G(x, y)$ denote the maximum number of edge-disjoint x, y-paths in *G*.

(日) (日) (日) (日) (日) (日) (日)

Let *G* be a graph or a digraph and $x, y \in V(G)$. Then an x, y-edge-cut is a set $L \subset E(G)$ such that G - L has no x, y-paths. Define $\kappa'_G(x, y)$ be the minimum size of an x, y-edge-cut in *G*. Also, by $\lambda'_G(x, y)$ denote the maximum number of edge-disjoint x, y-paths in *G*.

(日) (日) (日) (日) (日) (日) (日)

Note that in this case there is no restriction $xy \notin E(G)$.

Let *G* be a graph or a digraph and $x, y \in V(G)$. Then an x, y-edge-cut is a set $L \subset E(G)$ such that G - L has no x, y-paths. Define $\kappa'_G(x, y)$ be the minimum size of an x, y-edge-cut in *G*. Also, by $\lambda'_G(x, y)$ denote the maximum number of edge-disjoint x, y-paths in *G*.

Note that in this case there is no restriction $xy \notin E(G)$.

Again, clearly, $\kappa'_{G}(x, y) \geq \lambda'_{G}(x, y)$.

Theorem 4.12 (Menger): Let *G* be a graph, $x, y \in V(G)$. Then $\kappa'_G(x, y) = \lambda'_G(x, y)$.

Let *G* be a graph or a digraph and $x, y \in V(G)$. Then an x, y-edge-cut is a set $L \subset E(G)$ such that G - L has no x, y-paths. Define $\kappa'_G(x, y)$ be the minimum size of an x, y-edge-cut in *G*. Also, by $\lambda'_G(x, y)$ denote the maximum number of edge-disjoint x, y-paths in *G*.

Note that in this case there is no restriction $xy \notin E(G)$.

Again, clearly, $\kappa'_{G}(x, y) \geq \lambda'_{G}(x, y)$.

Theorem 4.12 (Menger): Let *G* be a graph, $x, y \in V(G)$. Then $\kappa'_G(x, y) = \lambda'_G(x, y)$.

We will prove the theorem later using flows in networks.

Digraph versions of Menger's Theorem

Let *G* be a digraph. Then both versions of local Menger's Theorems, Theorems 4.9 and 4.12 also hold for digraphs:

Theorem 4.13 (Menger): Let *G* be a digraph, $x, y \in V(G)$ and $xy \notin E(G)$. Then $\kappa_G(x, y) = \lambda_G(x, y)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 4.14 (Menger): Let *G* be a digraph, $x, y \in V(G)$. Then $\kappa'_G(x, y) = \lambda'_G(x, y)$. Let *G* be a digraph. Then both versions of local Menger's Theorems, Theorems 4.9 and 4.12 also hold for digraphs:

Theorem 4.13 (Menger): Let *G* be a digraph, $x, y \in V(G)$ and $xy \notin E(G)$. Then $\kappa_G(x, y) = \lambda_G(x, y)$.

Theorem 4.14 (Menger): Let *G* be a digraph, $x, y \in V(G)$. Then $\kappa'_G(x, y) = \lambda'_G(x, y)$.

We will prove the theorems later using flows in networks.

Let *G* be a graph, $U \subset V(G)$ and $x \in V(G) - U$. Then an *x*, *U*-fan of size *k* in *G* is a set of *k* paths from *x* to *U* such that any two of them share only *x*.

Let *G* be a graph, $U \subset V(G)$ and $x \in V(G) - U$. Then an *x*, *U*-fan of size *k* in *G* is a set of *k* paths from *x* to *U* such that any two of them share only *x*.

Theorem 4.15 (Fan Lemma): Let $n \ge k + 1$. An *n*-vertex graph *G* is *k*-connected if and only if for every choice $U \subset V(G)$ with $|U| \ge k$ and $x \in V(G) - U$, *G* has an *x*, *U*-fan of size *k*.

(日) (日) (日) (日) (日) (日) (日)

Let *G* be a graph, $U \subset V(G)$ and $x \in V(G) - U$. Then an *x*, *U*-fan of size *k* in *G* is a set of *k* paths from *x* to *U* such that any two of them share only *x*.

Theorem 4.15 (Fan Lemma): Let $n \ge k + 1$. An *n*-vertex graph *G* is *k*-connected if and only if for every choice $U \subset V(G)$ with $|U| \ge k$ and $x \in V(G) - U$, *G* has an *x*, *U*-fan of size *k*.

Proof. (\Rightarrow) Suppose *G* is *k*-connected, and $U \subset V(G)$ with $|U| \ge k$ and $x \in V(G) - U$ are given. Let *G'* be obtained from *G* by adding a new vertex *y* adjacent to all vertices of *U*.

Let *G* be a graph, $U \subset V(G)$ and $x \in V(G) - U$. Then an *x*, *U*-fan of size *k* in *G* is a set of *k* paths from *x* to *U* such that any two of them share only *x*.

Theorem 4.15 (Fan Lemma): Let $n \ge k + 1$. An *n*-vertex graph *G* is *k*-connected if and only if for every choice $U \subset V(G)$ with $|U| \ge k$ and $x \in V(G) - U$, *G* has an *x*, *U*-fan of size *k*.

Proof. (\Rightarrow) Suppose *G* is *k*-connected, and $U \subset V(G)$ with $|U| \ge k$ and $x \in V(G) - U$ are given. Let *G'* be obtained from *G* by adding a new vertex *y* adjacent to all vertices of *U*.

Since $|U| \ge k$, by Expansion Lemma, G' is also *k*-connected. So by Theorem 4.9 (or Theorem 4.11), G' has *k* int.-disjoint *x*, *y*-paths. When we remove *y* from each path, what remains is an *x*, *U*-fan of size *k*. This proves (\Rightarrow) (\Leftarrow) We use contrapositive. Suppose *G* is not *k*-connected. Since $n \ge k + 1$, there is an $S \subseteq V(G)$ with |S| = k - 1 such that G - S is disconnected. This means there is a partition $V(G) = S \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects *A* with *B*.

(\Leftarrow) We use contrapositive. Suppose *G* is not *k*-connected. Since $n \ge k + 1$, there is an $S \subseteq V(G)$ with |S| = k - 1 such that G - S is disconnected. This means there is a partition $V(G) = S \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects *A* with *B*.

Let $a \in A$ and $b \in B$. Take $U = S \cup B$ and x = a. Then each x, U-path in G contains a vertex of S. Since $|S| \le k - 1$, G has no x, U-fan of size k, as claimed.

Definitions

For a digraph G = (V, E) and $v \in V$, let $E^+(v)$ denote the set of edges leaving v and $E^-(v)$ — the set of edges entering v.

A network $G = \{V, E, s, t, \mathbf{c} = \{c(e)\}_{e \in E}\}$ is a directed graph (V, E) with a source vertex s, a sink vertex t, and a set of non-negative capacities $\{c(e)\}_{e \in E}$ of edges.

A function $f : E \to \mathbf{R}$ is called a flow in *G* if for every vertex $v \in V - s - t$,

$$div_{f}(v) = \sum_{e \in E^{+}(v)} f(e) - \sum_{e \in E^{-}(v)} f(e) = 0.$$
(1)

Definitions

For a digraph G = (V, E) and $v \in V$, let $E^+(v)$ denote the set of edges leaving v and $E^-(v)$ — the set of edges entering v.

A network $G = \{V, E, s, t, \mathbf{c} = \{c(e)\}_{e \in E}\}$ is a directed graph (V, E) with a source vertex s, a sink vertex t, and a set of non-negative capacities $\{c(e)\}_{e \in E}$ of edges.

A function $f : E \to \mathbf{R}$ is called a flow in *G* if for every vertex $v \in V - s - t$,

$$div_{f}(v) = \sum_{e \in E^{+}(v)} f(e) - \sum_{e \in E^{-}(v)} f(e) = 0.$$
(1)

A D F A 同 F A E F A E F A Q A

If $0 \le f(e) \le c(e)$ for every $e \in E$, then the flow is called feasible (for *G*).

Simple properties

Consider $\sum_{v \in V} div_f(v)$. If *f* is a flow, then by (1) this sum equals $div_f(s) + div_f(t)$.

Simple properties

Consider $\sum_{v \in V} div_f(v)$. If *f* is a flow, then by (1) this sum equals $div_f(s) + div_f(t)$.

On the other hand, every edge uv contributes f(uv) to

$$div_f(u) = \sum_{e \in E^+(u)} f(e) - \sum_{e \in E^-(u)} f(e)$$

and -f(uv) to

$$div_f(v) = \sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Therefore, $div_f(s) + div_f(t) = 0$. (*)

Simple properties

Consider $\sum_{v \in V} div_f(v)$. If *f* is a flow, then by (1) this sum equals $div_f(s) + div_f(t)$.

On the other hand, every edge uv contributes f(uv) to

$$div_f(u) = \sum_{e \in E^+(u)} f(e) - \sum_{e \in E^-(u)} f(e)$$

and -f(uv) to

$$\operatorname{div}_{f}(v) = \sum_{e \in E^{+}(v)} f(e) - \sum_{e \in E^{-}(v)} f(e).$$

Therefore, $div_f(s) + div_f(t) = 0$. (*)

The value $M(f) = div_f(s) = -div_f(t)$ is called the value of f. A flow with value zero is called circulation.

More definitions and a lemma

By definition, each flow *f* is a vector satisfying a system of linear equations and M(f) is a linear function of this vector. So, for any flows *f* and *g* and any reals α and β ,

 $M(\alpha f + \beta g) = \alpha M(f) + \beta M(g).$ (2)

More definitions and a lemma

By definition, each flow *f* is a vector satisfying a system of linear equations and M(f) is a linear function of this vector. So, for any flows *f* and *g* and any reals α and β ,

$$M(\alpha f + \beta g) = \alpha M(f) + \beta M(g).$$
(2)

A flow *f* is positive if $f(e) \ge 0$ for every $e \in E$ and there exists $e_0 \in E$ such that $f(e_0) > 0$.

We say that a flow *f* is a flow along a (directed) cycle (or along a (directed) *s*, *t*-path or *t*, *s*-path) if *f* is non-zero only on the edges of this cycle (*s*, *t*-path or *t*, *s*-path) and f(e) = f(e') for all *e*, *e'* in this cycle (*s*, *t*-path or *t*, *s*-path).

These flows are "simplest possible". By definition, a flow along a cycle is a circulation. It turns out that even most complicated flows are sums of these simple flows. Lemma 4.15. Every positive circulation f in a network G can be represented as the sum of at most |E(G)| - 1 positive flows along cycles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Lemma 4.15. Every positive circulation f in a network G can be represented as the sum of at most |E(G)| - 1 positive flows along cycles.

Proof. We use induction on the number *m* of the edges of *G*. The minimum possible number of edges is 2, and the only possible positive circulation with two edges is below.

Figure: Circulation with 2 edges.

(ロ) (同) (三) (三) (三) (○) (○)

Suppose the lemma holds for all circulations in networks with fewer than m edges, and let f be a positive circulation in a network G with m edges.

If $f(e_0) = 0$ for some $e_0 \in E$, then consider $G_0 = G - e_0$ and $f_0 = f|_{G_0}$. By the minimality of G, f_0 is the sum of at most $|E(G_0)| - 1 = m - 2$ positive flows along cycles. So, f is the sum of the same flows.

If $f(e_0) = 0$ for some $e_0 \in E$, then consider $G_0 = G - e_0$ and $f_0 = f|_{G_0}$. By the minimality of G, f_0 is the sum of at most $|E(G_0)| - 1 = m - 2$ positive flows along cycles. So, f is the sum of the same flows.

Thus we may assume that f(e) > 0 for every $e \in E$. Consider an arbitrary $e_1 = v_0v_1 \in E$. Since *f* is a circulation, there is an edge $e_2 = v_1v_2$ leaving v_1 . Similarly, there exists an edge $e_3 = v_2v_3$ leaving v_2 , and so on.

If $f(e_0) = 0$ for some $e_0 \in E$, then consider $G_0 = G - e_0$ and $f_0 = f|_{G_0}$. By the minimality of G, f_0 is the sum of at most $|E(G_0)| - 1 = m - 2$ positive flows along cycles. So, f is the sum of the same flows.

Thus we may assume that f(e) > 0 for every $e \in E$. Consider an arbitrary $e_1 = v_0v_1 \in E$. Since *f* is a circulation, there is an edge $e_2 = v_1v_2$ leaving v_1 . Similarly, there exists an edge $e_3 = v_2v_3$ leaving v_2 , and so on.

Let *k* be the minimum positive integer such that $v_k \in \{v_0, \ldots, v_{k-1}\}$. For definiteness, let $v_k = v_s$. Then $C = v_s v_{s+1} \ldots v_{k-1} v_k$ is a cycle in *G*.

Let $\rho = \min\{f(e) \mid e \in E(C)\}$, and $\varphi(C, \rho)$ be the flow along C of size ρ .

Consider $f_1 = f - \varphi(C, \rho)$. If $f_1 \equiv 0$, then *f* is the sum of one flow along a cycle (namely, along *C*).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $\rho = \min\{f(e) \mid e \in E(C)\}$, and $\varphi(C, \rho)$ be the flow along *C* of size ρ . Consider $f_1 = f - \varphi(C, \rho)$. If $f_1 \equiv 0$, then *f* is the sum of one

flow along a cycle (namely, along *C*).

Otherwise, f_1 is a positive flow and there exists $e_1 \in E(C)$ with $f_1(e_1) = 0$.

Due to the minimality of *G*, the flow $f_1 |_{G-e_1}$ can be represented as the sum of at most $|E(G - e_1)| - 1 = |E(G)| - 2$ positive flows along cycles.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $\rho = \min\{f(e) \mid e \in E(C)\}$, and $\varphi(C, \rho)$ be the flow along C of size ρ . Consider $f_1 = f - \varphi(C, \rho)$. If $f_1 \equiv 0$, then f is the sum of one flow along a cycle (namely, along C).

Otherwise, f_1 is a positive flow and there exists $e_1 \in E(C)$ with $f_1(e_1) = 0.$

Due to the minimality of G, the flow $f_1 \mid_{G-e_1}$ can be represented as the sum of at most $|E(G - e_1)| - 1 = |E(G)| - 2$ positive flows along cycles.

Adding $\varphi(C, \rho)$ to this sum, we find a representation for f, as claimed.

(ロ) (同) (三) (三) (三) (三) (○) (○)

This proves the lemma.