Menger's Theorem and its variations, II

Lecture 24

Theorem 4.9 (Menger): Let G be a graph, $x, y \in V(G)$ and $x y \notin E(G)$. Then $\kappa_{G}(x, y)=\lambda_{G}(x, y)$.

Lemma 4.10: Deletion of an edge from a graph decreases connectivity by at most 1 .

Global Menger's Theorem

The following theorem shows how k-connectedness refines itself.
Theorem 4.11 (Menger) : Suppose $n \geq k+1$. Then an n-vertex graph G is k-connected if and only if $\lambda_{G}(x, y) \geq k$ for all distinct $x, y \in V(G)$.

Global Menger's Theorem

The following theorem shows how k-connectedness refines itself.
Theorem 4.11 (Menger) : Suppose $n \geq k+1$. Then an n-vertex graph G is k-connected if and only if $\lambda_{G}(x, y) \geq k$ for all distinct $x, y \in V(G)$.

Proof. $(\Leftarrow) \quad$ We prove the contrapositive. Suppose an n-vertex G is not k-connected. Since $n \geq k+1$, there is an $S \subseteq V(G)$ with $|S| \leq k-1$ such that $G-S$ is disconnected. This means there is a partition $V(G)=S \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects A with B.

Global Menger's Theorem

The following theorem shows how k-connectedness refines itself.
Theorem 4.11 (Menger) : Suppose $n \geq k+1$. Then an n-vertex graph G is k-connected if and only if $\lambda_{G}(x, y) \geq k$ for all distinct $x, y \in V(G)$.

Proof. $(\Leftarrow) \quad$ We prove the contrapositive. Suppose an n-vertex G is not k-connected. Since $n \geq k+1$, there is an $S \subseteq V(G)$ with $|S| \leq k-1$ such that $G-S$ is disconnected. This means there is a partition $V(G)=S \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects A with B.

Let $a \in A$ and $b \in B$. Then each a, b-path in G contains a vertex of S. Since $|S| \leq k-1, \lambda_{G}(a, b) \leq k-1$, as claimed.
$(\Rightarrow) \quad$ Let G be k-connected. Take any distinct $x, y \in V(G)$. Case 1: $x y \notin E(G)$. Since G is k-connected, $\kappa_{G}(x, y) \geq k$. So by Theorem 4.9, $\lambda_{G}(x, y) \geq k$.
$(\Rightarrow) \quad$ Let G be k-connected. Take any distinct $x, y \in V(G)$. Case 1: $x y \notin E(G)$. Since G is k-connected, $\kappa_{G}(x, y) \geq k$. So by Theorem 4.9, $\lambda_{G}(x, y) \geq k$.

Case 2: G has exactly $s>0$ edges connecting x with y. Let these edges be e_{1}, \ldots, e_{s}.
$(\Rightarrow) \quad$ Let G be k-connected. Take any distinct $x, y \in V(G)$. Case 1: $x y \notin E(G)$. Since G is k-connected, $\kappa_{G}(x, y) \geq k$. So by Theorem 4.9, $\lambda_{G}(x, y) \geq k$.

Case 2: G has exactly $s>0$ edges connecting x with y. Let these edges be e_{1}, \ldots, e_{s}.
Consider $G^{\prime}=G-\left\{e_{1}, \ldots, e_{s}\right\}$. By Lemma 4.10, $\kappa\left(G^{\prime}\right) \geq k-s$. Also xy $\notin E\left(G^{\prime}\right)$.
$(\Rightarrow) \quad$ Let G be k-connected. Take any distinct $x, y \in V(G)$. Case 1: $x y \notin E(G)$. Since G is k-connected, $\kappa_{G}(x, y) \geq k$. So by Theorem 4.9, $\lambda_{G}(x, y) \geq k$.

Case 2: G has exactly $s>0$ edges connecting x with y. Let these edges be e_{1}, \ldots, e_{s}.
Consider $G^{\prime}=G-\left\{e_{1}, \ldots, e_{s}\right\}$. By Lemma 4.10, $\kappa\left(G^{\prime}\right) \geq k-s$. Also $x y \notin E\left(G^{\prime}\right)$.

So, Case 1 applies to G^{\prime}, and hence $\lambda_{G^{\prime}}(x, y) \geq k-s$. Together with the s edges e_{1}, \ldots, e_{s} we get $(k-s)+s=k$ int.-disjoint x, y-paths, as claimed.
$(\Rightarrow) \quad$ Let G be k-connected. Take any distinct $x, y \in V(G)$.
Case 1: $x y \notin E(G)$. Since G is k-connected, $\kappa_{G}(x, y) \geq k$. So by Theorem 4.9, $\lambda_{G}(x, y) \geq k$.

Case 2: G has exactly $s>0$ edges connecting x with y. Let these edges be e_{1}, \ldots, e_{s}.
Consider $G^{\prime}=G-\left\{e_{1}, \ldots, e_{s}\right\}$. By Lemma 4.10, $\kappa\left(G^{\prime}\right) \geq k-s$. Also $x y \notin E\left(G^{\prime}\right)$.

So, Case 1 applies to G^{\prime}, and hence $\lambda_{G^{\prime}}(x, y) \geq k-s$. Together with the s edges e_{1}, \ldots, e_{s} we get $(k-s)+s=k$ int.-disjoint x, y-paths, as claimed.

Remark. Condition $n \geq k+1$ is important here. Indeed, consider the graph G obtained from C_{3} by replacing each edge with 1000 multiple edges. Then the connectivity of G is 2 , but for any two vertices $x, y \in E(G), \lambda_{G}(x, y)=1001$.

Edge version of Menger's Theorem

Let G be a graph or a digraph and $x, y \in V(G)$. Then an x, y-edge-cut is a set $L \subset E(G)$ such that $G-L$ has no x, y-paths. Define $\kappa_{G}^{\prime}(x, y)$ be the minimum size of an x, y-edge-cut in G.
Also, by $\lambda_{G}^{\prime}(x, y)$ denote the maximum number of edge-disjoint x, y-paths in G.

Edge version of Menger's Theorem

Let G be a graph or a digraph and $x, y \in V(G)$. Then an x, y-edge-cut is a set $L \subset E(G)$ such that $G-L$ has no x, y-paths. Define $\kappa_{G}^{\prime}(x, y)$ be the minimum size of an x, y-edge-cut in G.
Also, by $\lambda_{G}^{\prime}(x, y)$ denote the maximum number of edge-disjoint x, y-paths in G.

Note that in this case there is no restriction $x y \notin E(G)$.

Edge version of Menger's Theorem

Let G be a graph or a digraph and $x, y \in V(G)$. Then an x, y-edge-cut is a set $L \subset E(G)$ such that $G-L$ has no x, y-paths. Define $\kappa_{G}^{\prime}(x, y)$ be the minimum size of an x, y-edge-cut in G.
Also, by $\lambda_{G}^{\prime}(x, y)$ denote the maximum number of edge-disjoint x, y-paths in G.

Note that in this case there is no restriction $x y \notin E(G)$.
Again, clearly, $\kappa_{G}^{\prime}(x, y) \geq \lambda_{G}^{\prime}(x, y)$.
Theorem 4.12 (Menger): Let G be a graph, $x, y \in V(G)$. Then $\kappa_{G}^{\prime}(x, y)=\lambda_{G}^{\prime}(x, y)$.

Edge version of Menger's Theorem

Let G be a graph or a digraph and $x, y \in V(G)$. Then an x, y-edge-cut is a set $L \subset E(G)$ such that $G-L$ has no x, y-paths. Define $\kappa_{G}^{\prime}(x, y)$ be the minimum size of an x, y-edge-cut in G.
Also, by $\lambda_{G}^{\prime}(x, y)$ denote the maximum number of edge-disjoint x, y-paths in G.

Note that in this case there is no restriction $x y \notin E(G)$.
Again, clearly, $\kappa_{G}^{\prime}(x, y) \geq \lambda_{G}^{\prime}(x, y)$.
Theorem 4.12 (Menger): Let G be a graph, $x, y \in V(G)$. Then $\kappa_{G}^{\prime}(x, y)=\lambda_{G}^{\prime}(x, y)$.
We will prove the theorem later using flows in networks.

Digraph versions of Menger's Theorem

Let G be a digraph. Then both versions of local Menger's Theorems, Theorems 4.9 and 4.12 also hold for digraphs:

Theorem 4.13 (Menger): Let G be a digraph, $x, y \in V(G)$ and $x y \notin E(G)$. Then $\kappa_{G}(x, y)=\lambda_{G}(x, y)$.

Theorem 4.14 (Menger): Let G be a digraph, $x, y \in V(G)$. Then $\kappa_{G}^{\prime}(x, y)=\lambda_{G}^{\prime}(x, y)$.

Digraph versions of Menger's Theorem

Let G be a digraph. Then both versions of local Menger's Theorems, Theorems 4.9 and 4.12 also hold for digraphs:

Theorem 4.13 (Menger): Let G be a digraph, $x, y \in V(G)$ and $x y \notin E(G)$. Then $\kappa_{G}(x, y)=\lambda_{G}(x, y)$.

Theorem 4.14 (Menger): Let G be a digraph, $x, y \in V(G)$. Then $\kappa_{G}^{\prime}(x, y)=\lambda_{G}^{\prime}(x, y)$.

We will prove the theorems later using flows in networks.

Fans and Fan Lemma

Let G be a graph, $U \subset V(G)$ and $x \in V(G)-U$. Then an x, U-fan of size k in G is a set of k paths from x to U such that any two of them share only x.

Fans and Fan Lemma

Let G be a graph, $U \subset V(G)$ and $x \in V(G)-U$. Then an x, U-fan of size k in G is a set of k paths from x to U such that any two of them share only x.

Theorem 4.15 (Fan Lemma): Let $n \geq k+1$. An n-vertex graph G is k-connected if and only if for every choice $U \subset V(G)$ with $|U| \geq k$ and $x \in V(G)-U, G$ has an x, U-fan of size k.

Fans and Fan Lemma

Let G be a graph, $U \subset V(G)$ and $x \in V(G)-U$. Then an x, U-fan of size k in G is a set of k paths from x to U such that any two of them share only x.

Theorem 4.15 (Fan Lemma): Let $n \geq k+1$. An n-vertex graph G is k-connected if and only if for every choice $U \subset V(G)$ with $|U| \geq k$ and $x \in V(G)-U, G$ has an x, U-fan of size k.

Proof. (\Rightarrow) Suppose G is k-connected, and $U \subset V(G)$ with $|U| \geq k$ and $x \in V(G)-U$ are given. Let G^{\prime} be obtained from G by adding a new vertex y adjacent to all vertices of U.

Fans and Fan Lemma

Let G be a graph, $U \subset V(G)$ and $x \in V(G)-U$. Then an x, U-fan of size k in G is a set of k paths from x to U such that any two of them share only x.

Theorem 4.15 (Fan Lemma): Let $n \geq k+1$. An n-vertex graph G is k-connected if and only if for every choice $U \subset V(G)$ with $|U| \geq k$ and $x \in V(G)-U, G$ has an x, U-fan of size k.

Proof. $(\Rightarrow) \quad$ Suppose G is k-connected, and $U \subset V(G)$ with $|U| \geq k$ and $x \in V(G)-U$ are given. Let G^{\prime} be obtained from G by adding a new vertex y adjacent to all vertices of U.

Since $|U| \geq k$, by Expansion Lemma, G^{\prime} is also k-connected. So by Theorem 4.9 (or Theorem 4.11), G^{\prime} has k int.-disjoint x, y-paths. When we remove y from each path, what remains is an x, U-fan of size k. This proves (\Rightarrow).
$(\Leftrightarrow) \quad$ We use contrapositive. Suppose G is not k-connected. Since $n \geq k+1$, there is an $S \subseteq V(G)$ with $|S|=k-1$ such that $G-S$ is disconnected. This means there is a partition $V(G)=S \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects A with B.
(\Leftrightarrow) We use contrapositive. Suppose G is not k-connected. Since $n \geq k+1$, there is an $S \subseteq V(G)$ with $|S|=k-1$ such that $G-S$ is disconnected. This means there is a partition $V(G)=S \cup A \cup B$ with $A \neq \emptyset$ and $B \neq \emptyset$ such that no edge connects A with B.

Let $a \in A$ and $b \in B$. Take $U=S \cup B$ and $x=a$. Then each x, U-path in G contains a vertex of S. Since $|S| \leq k-1, G$ has no x, U-fan of size k, as claimed.

Definitions

For a digraph $G=(V, E)$ and $v \in V$, let $E^{+}(v)$ denote the set of edges leaving v and $E^{-}(v)$ - the set of edges entering v.

A network $G=\left\{V, E, s, t, \mathbf{c}=\{c(e)\}_{e \in E}\right\}$ is a directed graph (V, E) with a source vertex s, a sink vertex t, and a set of non-negative capacities $\{c(e)\}_{e \in E}$ of edges.

A function $f: E \rightarrow \mathbf{R}$ is called a flow in G if for every vertex $v \in V-s-t$,

$$
\begin{equation*}
\operatorname{div}_{f}(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)=0 \tag{1}
\end{equation*}
$$

Definitions

For a digraph $G=(V, E)$ and $v \in V$, let $E^{+}(v)$ denote the set of edges leaving v and $E^{-}(v)$ - the set of edges entering v.

A network $G=\left\{V, E, s, t, \mathbf{c}=\{c(e)\}_{e \in E}\right\}$ is a directed graph (V, E) with a source vertex s, a sink vertex t, and a set of non-negative capacities $\{c(e)\}_{e \in E}$ of edges.

A function $f: E \rightarrow \mathbf{R}$ is called a flow in G if for every vertex $v \in V-s-t$,

$$
\begin{equation*}
\operatorname{div}_{f}(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)=0 \tag{1}
\end{equation*}
$$

If $0 \leq f(e) \leq \mathbf{c}(e)$ for every $e \in E$, then the flow is called feasible (for G).

Simple properties

Consider $\sum_{v \in V} \operatorname{div}_{f}(v)$.
If f is a flow, then by (1) this sum equals $\operatorname{div}_{f}(s)+\operatorname{div}_{f}(t)$.

Simple properties

Consider $\sum_{v \in V} \operatorname{div}_{f}(v)$.
If f is a flow, then by (1) this sum equals $\operatorname{div}_{f}(s)+\operatorname{div}_{f}(t)$.
On the other hand, every edge $u v$ contributes $f(u v)$ to

$$
\operatorname{div}_{f}(u)=\sum_{e \in E^{+}(u)} f(e)-\sum_{e \in E^{-}(u)} f(e)
$$

and $-f(u v)$ to

$$
\operatorname{div}_{f}(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)
$$

Therefore, $\operatorname{div}_{f}(s)+\operatorname{div}_{f}(t)=0 .(*)$

Simple properties

Consider $\sum_{v \in V} \operatorname{div}_{f}(v)$.
If f is a flow, then by (1) this sum equals $\operatorname{div}_{f}(s)+\operatorname{div}_{f}(t)$.
On the other hand, every edge $u v$ contributes $f(u v)$ to

$$
\operatorname{div}_{f}(u)=\sum_{e \in E^{+}(u)} f(e)-\sum_{e \in E^{-}(u)} f(e)
$$

and $-f(u v)$ to

$$
\operatorname{div}_{f}(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)
$$

Therefore, $\operatorname{div}_{f}(s)+\operatorname{div}_{f}(t)=0 .(*)$
The value $M(f)=\operatorname{div}_{f}(s)=-\operatorname{div}_{f}(t)$ is called the value of f.
A flow with value zero is called circulation.

More definitions and a lemma

By definition, each flow f is a vector satisfying a system of linear equations and $M(f)$ is a linear function of this vector. So, for any flows f and g and any reals α and β,

$$
\begin{equation*}
M(\alpha f+\beta g)=\alpha M(f)+\beta M(g) . \tag{2}
\end{equation*}
$$

More definitions and a lemma

By definition, each flow f is a vector satisfying a system of linear equations and $M(f)$ is a linear function of this vector. So, for any flows f and g and any reals α and β,

$$
\begin{equation*}
M(\alpha f+\beta g)=\alpha M(f)+\beta M(g) \tag{2}
\end{equation*}
$$

A flow f is positive if $f(e) \geq 0$ for every $e \in E$ and there exists $e_{0} \in E$ such that $f\left(e_{0}\right)>0$.
We say that a flow f is a flow along a (directed) cycle (or along a (directed) s, t-path or t, s-path) if f is non-zero only on the edges of this cycle (s, t-path or t, s-path) and $f(e)=f\left(e^{\prime}\right)$ for all e, e^{\prime} in this cycle (s, t-path or t, s-path).

These flows are "simplest possible". By definition, a flow along a cycle is a circulation. It turns out that even most complicated flows are sums of these simple flows.

Lemma 4.15. Every positive circulation f in a network G can be represented as the sum of at most $|E(G)|-1$ positive flows along cycles.

Lemma 4.15. Every positive circulation f in a network G can be represented as the sum of at most $|E(G)|-1$ positive flows along cycles.

Proof. We use induction on the number m of the edges of G. The minimum possible number of edges is 2 , and the only possible positive circulation with two edges is below.

Figure: Circulation with 2 edges.
Suppose the lemma holds for all circulations in networks with fewer than m edges, and let f be a positive circulation in a network G with m edges.

If $f\left(e_{0}\right)=0$ for some $e_{0} \in E$, then consider $G_{0}=G-e_{0}$ and $f_{0}=\left.f\right|_{G_{0}}$. By the minimality of G, f_{0} is the sum of at most $\left|E\left(G_{0}\right)\right|-1=m-2$ positive flows along cycles. So, f is the sum of the same flows.

If $f\left(e_{0}\right)=0$ for some $e_{0} \in E$, then consider $G_{0}=G-e_{0}$ and $f_{0}=\left.f\right|_{G_{0}}$. By the minimality of G, f_{0} is the sum of at most $\left|E\left(G_{0}\right)\right|-1=m-2$ positive flows along cycles. So, f is the sum of the same flows.
Thus we may assume that $f(e)>0$ for every $e \in E$. Consider an arbitrary $e_{1}=v_{0} v_{1} \in E$. Since f is a circulation, there is an edge $e_{2}=v_{1} v_{2}$ leaving v_{1}. Similarly, there exists an edge $e_{3}=v_{2} v_{3}$ leaving v_{2}, and so on.

If $f\left(e_{0}\right)=0$ for some $e_{0} \in E$, then consider $G_{0}=G-e_{0}$ and $f_{0}=\left.f\right|_{G_{0}}$. By the minimality of G, f_{0} is the sum of at most $\left|E\left(G_{0}\right)\right|-1=m-2$ positive flows along cycles. So, f is the sum of the same flows.
Thus we may assume that $f(e)>0$ for every $e \in E$. Consider an arbitrary $e_{1}=v_{0} v_{1} \in E$. Since f is a circulation, there is an edge $e_{2}=v_{1} v_{2}$ leaving v_{1}. Similarly, there exists an edge $e_{3}=v_{2} v_{3}$ leaving v_{2}, and so on.

Let k be the minimum positive integer such that
$v_{k} \in\left\{v_{0}, \ldots, v_{k-1}\right\}$. For definiteness, let $v_{k}=v_{s}$. Then $C=v_{s} v_{s+1} \ldots v_{k-1} v_{k}$ is a cycle in G.

Let $\rho=\min \{f(e) \mid e \in E(C)\}$, and $\varphi(C, \rho)$ be the flow along C of size ρ. Consider $f_{1}=f-\varphi(C, \rho)$. If $f_{1} \equiv 0$, then f is the sum of one flow along a cycle (namely, along C).

Let $\rho=\min \{f(e) \mid e \in E(C)\}$, and $\varphi(C, \rho)$ be the flow along C of size ρ.
Consider $f_{1}=f-\varphi(C, \rho)$. If $f_{1} \equiv 0$, then f is the sum of one flow along a cycle (namely, along C).

Otherwise, f_{1} is a positive flow and there exists $e_{1} \in E(C)$ with $f_{1}\left(e_{1}\right)=0$.
Due to the minimality of G, the flow $\left.f_{1}\right|_{G-e_{1}}$ can be represented as the sum of at most $\left|E\left(G-e_{1}\right)\right|-1=|E(G)|-2$ positive flows along cycles.

Let $\rho=\min \{f(e) \mid e \in E(C)\}$, and $\varphi(C, \rho)$ be the flow along C of size ρ.
Consider $f_{1}=f-\varphi(C, \rho)$. If $f_{1} \equiv 0$, then f is the sum of one flow along a cycle (namely, along C).

Otherwise, f_{1} is a positive flow and there exists $e_{1} \in E(C)$ with $f_{1}\left(e_{1}\right)=0$.
Due to the minimality of G, the flow $\left.f_{1}\right|_{G-e_{1}}$ can be represented as the sum of at most $\left|E\left(G-e_{1}\right)\right|-1=|E(G)|-2$ positive flows along cycles.

Adding $\varphi(C, \rho)$ to this sum, we find a representation for f, as claimed.
This proves the lemma.

