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Theorem 4.9 (Menger): Let G be a graph, x , y ∈ V (G) and
xy /∈ E(G). Then κG(x , y) = λG(x , y).

Lemma 4.10: Deletion of an edge from a graph decreases
connectivity by at most 1.



Global Menger’s Theorem
The following theorem shows how k -connectedness refines
itself.
Theorem 4.11 (Menger) : Suppose n ≥ k + 1. Then an n-vertex
graph G is k -connected if and only if λG(x , y) ≥ k for all distinct
x , y ∈ V (G).

Proof. (⇐) We prove the contrapositive. Suppose an
n-vertex G is not k -connected. Since n ≥ k + 1, there is an
S ⊆ V (G) with |S| ≤ k − 1 such that G − S is disconnected.
This means there is a partition V (G) = S ∪ A ∪ B with A ̸= ∅
and B ̸= ∅ such that no edge connects A with B.

Let a ∈ A and b ∈ B. Then each a,b-path in G contains a
vertex of S. Since |S| ≤ k − 1, λG(a,b) ≤ k − 1, as claimed.
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(⇒) Let G be k -connected. Take any distinct x , y ∈ V (G).
Case 1: xy /∈ E(G). Since G is k -connected, κG(x , y) ≥ k . So
by Theorem 4.9, λG(x , y) ≥ k .

Case 2: G has exactly s > 0 edges connecting x with y . Let
these edges be e1, . . . ,es.
Consider G′ = G − {e1, . . . ,es}. By Lemma 4.10,
κ(G′) ≥ k − s. Also xy /∈ E(G′).

So, Case 1 applies to G′, and hence λG′(x , y) ≥ k − s.
Together with the s edges e1, . . . ,es we get (k − s) + s = k
int.-disjoint x , y -paths, as claimed.

Remark. Condition n ≥ k + 1 is important here. Indeed,
consider the graph G obtained from C3 by replacing each edge
with 1000 multiple edges. Then the connectivity of G is 2, but
for any two vertices x , y ∈ E(G), λG(x , y) = 1001.
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Edge version of Menger’s Theorem

Let G be a graph or a digraph and x , y ∈ V (G). Then an
x , y -edge-cut is a set L ⊂ E(G) such that G − L has no
x , y -paths. Define κ′G(x , y) be the minimum size of an
x , y -edge-cut in G.
Also, by λ′

G(x , y) denote the maximum number of edge-disjoint
x , y -paths in G.

Note that in this case there is no restriction xy /∈ E(G).

Again, clearly, κ′G(x , y) ≥ λ′
G(x , y).

Theorem 4.12 (Menger): Let G be a graph, x , y ∈ V (G). Then
κ′G(x , y) = λ′

G(x , y).

We will prove the theorem later using flows in networks.
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Digraph versions of Menger’s Theorem

Let G be a digraph. Then both versions of local Menger’s
Theorems, Theorems 4.9 and 4.12 also hold for digraphs:

Theorem 4.13 (Menger): Let G be a digraph, x , y ∈ V (G) and
xy /∈ E(G). Then κG(x , y) = λG(x , y).

Theorem 4.14 (Menger): Let G be a digraph, x , y ∈ V (G).
Then κ′G(x , y) = λ′

G(x , y).

We will prove the theorems later using flows in networks.
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Fans and Fan Lemma
Let G be a graph, U ⊂ V (G) and x ∈ V (G)− U. Then an
x ,U-fan of size k in G is a set of k paths from x to U such that
any two of them share only x .

Theorem 4.15 (Fan Lemma): Let n ≥ k + 1. An n-vertex graph
G is k -connected if and only if for every choice U ⊂ V (G) with
|U| ≥ k and x ∈ V (G)− U, G has an x ,U-fan of size k .

Proof. (⇒) Suppose G is k -connected, and U ⊂ V (G) with
|U| ≥ k and x ∈ V (G)− U are given. Let G′ be obtained from
G by adding a new vertex y adjacent to all vertices of U.

Since |U| ≥ k , by Expansion Lemma, G′ is also k -connected.
So by Theorem 4.9 (or Theorem 4.11), G′ has k int.-disjoint
x , y -paths. When we remove y from each path, what remains is
an x ,U-fan of size k . This proves (⇒) .
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(⇐) We use contrapositive. Suppose G is not k -connected.
Since n ≥ k + 1, there is an S ⊆ V (G) with |S| = k − 1 such
that G − S is disconnected. This means there is a partition
V (G) = S ∪ A ∪ B with A ̸= ∅ and B ̸= ∅ such that no edge
connects A with B.

Let a ∈ A and b ∈ B. Take U = S ∪ B and x = a. Then each
x ,U-path in G contains a vertex of S. Since |S| ≤ k − 1, G has
no x ,U-fan of size k , as claimed.
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Definitions

For a digraph G = (V ,E) and v ∈ V , let E+(v) denote the set
of edges leaving v and E−(v) — the set of edges entering v .

A network G = {V ,E , s, t ,c = {c(e)}e∈E} is a directed graph
(V ,E) with a source vertex s, a sink vertex t , and a set of
non-negative capacities {c(e)}e∈E of edges.

A function f : E → R is called a flow in G if for every vertex
v ∈ V − s − t ,

divf (v) =
∑

e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e) = 0. (1)

If 0 ≤ f (e) ≤ c(e) for every e ∈ E , then the flow is called
feasible (for G).
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Simple properties
Consider

∑
v∈V divf (v).

If f is a flow, then by (1) this sum equals divf (s) + divf (t).

On the other hand, every edge uv contributes f (uv) to

divf (u) =
∑

e∈E+(u)

f (e)−
∑

e∈E−(u)

f (e)

and −f (uv) to

divf (v) =
∑

e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e).

Therefore, divf (s) + divf (t) = 0. (∗)

The value M(f ) = divf (s) = −divf (t) is called the value of f .
A flow with value zero is called circulation.
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More definitions and a lemma
By definition, each flow f is a vector satisfying a system of
linear equations and M(f ) is a linear function of this vector.
So, for any flows f and g and any reals α and β,

M(αf + βg) = αM(f ) + βM(g). (2)

A flow f is positive if f (e) ≥ 0 for every e ∈ E and there exists
e0 ∈ E such that f (e0) > 0.
We say that a flow f is a flow along a (directed) cycle (or along
a (directed) s, t-path or t , s-path ) if f is non-zero only on the
edges of this cycle (s, t-path or t , s-path) and f (e) = f (e′) for all
e,e′ in this cycle (s, t-path or t , s-path).

These flows are ”simplest possible”. By definition, a flow along
a cycle is a circulation. It turns out that even most complicated
flows are sums of these simple flows.
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Lemma 4.15. Every positive circulation f in a network G can be
represented as the sum of at most |E(G)| − 1 positive flows
along cycles.

Proof. We use induction on the number m of the edges of G.
The minimum possible number of edges is 2, and the only
possible positive circulation with two edges is below.

Figure: Circulation with 2 edges.

Suppose the lemma holds for all circulations in networks with
fewer than m edges, and let f be a positive circulation in a
network G with m edges.
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If f (e0) = 0 for some e0 ∈ E , then consider G0 = G − e0 and
f0 = f |G0 . By the minimality of G, f0 is the sum of at most
|E(G0)| − 1 = m − 2 positive flows along cycles. So, f is the
sum of the same flows.

Thus we may assume that f (e) > 0 for every e ∈ E . Consider
an arbitrary e1 = v0v1 ∈ E . Since f is a circulation, there is an
edge e2 = v1v2 leaving v1. Similarly, there exists an edge
e3 = v2v3 leaving v2, and so on.

Let k be the minimum positive integer such that
vk ∈ {v0, . . . , vk−1}. For definiteness, let vk = vs. Then
C = vsvs+1 . . . vk−1vk is a cycle in G.
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Let ρ = min{f (e) | e ∈ E(C)}, and φ(C, ρ) be the flow along C
of size ρ.
Consider f1 = f − φ(C, ρ). If f1 ≡ 0, then f is the sum of one
flow along a cycle (namely, along C).

Otherwise, f1 is a positive flow and there exists e1 ∈ E(C) with
f1(e1) = 0.
Due to the minimality of G, the flow f1 |G−e1 can be represented
as the sum of at most |E(G − e1)| − 1 = |E(G)| − 2 positive
flows along cycles.

Adding φ(C, ρ) to this sum, we find a representation for f , as
claimed.
This proves the lemma.



Let ρ = min{f (e) | e ∈ E(C)}, and φ(C, ρ) be the flow along C
of size ρ.
Consider f1 = f − φ(C, ρ). If f1 ≡ 0, then f is the sum of one
flow along a cycle (namely, along C).

Otherwise, f1 is a positive flow and there exists e1 ∈ E(C) with
f1(e1) = 0.
Due to the minimality of G, the flow f1 |G−e1 can be represented
as the sum of at most |E(G − e1)| − 1 = |E(G)| − 2 positive
flows along cycles.

Adding φ(C, ρ) to this sum, we find a representation for f , as
claimed.
This proves the lemma.



Let ρ = min{f (e) | e ∈ E(C)}, and φ(C, ρ) be the flow along C
of size ρ.
Consider f1 = f − φ(C, ρ). If f1 ≡ 0, then f is the sum of one
flow along a cycle (namely, along C).

Otherwise, f1 is a positive flow and there exists e1 ∈ E(C) with
f1(e1) = 0.
Due to the minimality of G, the flow f1 |G−e1 can be represented
as the sum of at most |E(G − e1)| − 1 = |E(G)| − 2 positive
flows along cycles.

Adding φ(C, ρ) to this sum, we find a representation for f , as
claimed.
This proves the lemma.


