Flows in networks

Lecture 25



Definitions

For a digraph G= (V,E) and v € V, let E*(v) denote the set
of edges leaving v and £~ (v) — the set of edges entering v.

Anetwork G={V,E,s,t,c = {c(e)}eck} is a directed graph
(V, E) with a source vertex s, a sink vertex t, and a set of
non-negative capacities {c(e)}oc£ of edges.

A function f : E — Ris called a flow in G if for every vertex
veV-—-s—t,

divi(v)= > fle)— > f(e)=0. (1)

ecE+(v) ecE—(v)
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If 0 < f(e) < c(e) for every e € E, then the flow is called
feasible (for G).
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The value M(f) = div¢(s) = —divs(t) is called the value of f.
A flow with value zero is called circulation.



More definitions and a lemma

By definition, each flow f is a vector satisfying a system of
linear equations and M(f) is a linear function of this vector.
So, for any flows f and g and any reals « and £,

M(af + Bg) = aM(f) + BM(g).
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A flow f is positive if f(e) > 0 for every e € E and there exists
€ € E such that f(ep) > 0.

We say that a flow f is a flow along a (directed) cycle (or along
a (directed) s, t-path or t, s-path ) if f is non-zero only on the
edges of this cycle (s, t-path or t, s-path) and f(e) = f(¢€') for all
e, € in this cycle (s, t-path or t, s-path).

These flows are "simplest possible”. By definition, a flow along
a cycle is a circulation. It turns out that even most complicated
flows are sums of these simple flows.



Lemma 4.15. Every positive circulation f in a network G can be
represented as the sum of at most |E(G)| — 1 positive flows
along cycles.



Lemma 4.15. Every positive circulation f in a network G can be
represented as the sum of at most |E(G)| — 1 positive flows
along cycles.

Proof. We use induction on the number m of the edges of G.
The minimum possible number of edges is 2, and the only
possible positive circulation with two edges is below.

Figure: Circulation with 2 edges.

Suppose the lemma holds for all circulations in networks with
fewer than m edges, and let f be a positive circulation in a
network G with m edges.
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If f(ep) = O for some gy € E, then consider Gy = G — ey and
fo = f |g,- By the minimality of G, f is the sum of at most
|[E(Go)| — 1 = m — 2 positive flows along cycles. So, f is the
sum of the same flows.
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|[E(Go)| — 1 = m — 2 positive flows along cycles. So, f is the
sum of the same flows.

Thus we may assume that f(e) > 0 for every e € E. Consider
an arbitrary e; = vgv4 € E. Since f is a circulation, there is an
edge e> = vy v leaving v4. Similarly, there exists an edge

e3 = VoV leaving v», and so on.
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Let k be the minimum positive integer such that
Vk € {v,..., Vx_1}. For definiteness, let vx = vs. Then
C=VsVsiq...Vk_qVgisacyclein G.




Let p = min{f(e) | e € E(C)}, and (C, p) be the flow along C

of size p.
Consider f; = f — p(C, p). If f{ =0, then f is the sum of one

flow along a cycle (namely, along C).
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Otherwise, f; is a positive flow and there exists e; € E(C) with
fi (61) =0.

Due to the minimality of G, the flow f; |g_¢, can be represented
as the sum of at most |[E(G — e1)| — 1 = |E(G)| — 2 positive
flows along cycles.



Let p = min{f(e) | e € E(C)}, and ¢(C, p) be the flow along C
of size p.

Consider f; = f — p(C, p). If f{ =0, then f is the sum of one
flow along a cycle (namely, along C).

Otherwise, f; is a positive flow and there exists e; € E(C) with
fi (61) =0.

Due to the minimality of G, the flow f; |g_¢, can be represented
as the sum of at most |[E(G — e1)| — 1 = |E(G)| — 2 positive
flows along cycles.

Adding ¢(C, p) to this sum, we find a representation for f, as
claimed.
This proves the lemma.
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edge gy = ts and let fy differ from f only in that fy(ey) = M(f).
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Proof. If M(f) = 0, then f is a circulation. In this case we are
done by Lemma 4.15.

Case 1: M(f) > 0. Let Gy be obtained from G by adding new
edge gy = ts and let fy differ from f only in that fy(ey) = M(f).

Then f is a circulation in Gy. By Lemma 4.15, fy is the sum of
at most |[E(Gp)| — 1 = |E(G)| positive flows along cycles, say
along cycles Cy, ..., Cn where m < |E(G)|. Delete edge e
from each C; containing it. What remains in such a cycle is an
s, t-path P;. Thus f is the sum of the flows along paths P;s and
along cycles C;js that do not contain ey.



Case 2: M(f) < 0. Let Gy be obtained from G by adding new
edge ey = st and let f; differ from f only in that f;(e1) = —M(f).
Then the argument is the same as in Case 1.

This proves Theorem 4.16.
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An example:
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Hence f = ¢(C1, 1)+ ¢(P1,3) + &(P2, 1) + (Ps, 1)



