Flows in networks

Lecture 25

Definitions

For a digraph G = (V, E) and $v \in V$, let $E^+(v)$ denote the set of edges leaving v and $E^-(v)$ — the set of edges entering v.

A network $G = \{V, E, s, t, \mathbf{c} = \{c(e)\}_{e \in E}\}$ is a directed graph (V, E) with a source vertex s, a sink vertex t, and a set of non-negative capacities $\{c(e)\}_{e \in E}$ of edges.

A function $f : E \to \mathbf{R}$ is called a flow in *G* if for every vertex $v \in V - s - t$,

$$div_{f}(v) = \sum_{e \in E^{+}(v)} f(e) - \sum_{e \in E^{-}(v)} f(e) = 0.$$
(1)

Definitions

For a digraph G = (V, E) and $v \in V$, let $E^+(v)$ denote the set of edges leaving v and $E^-(v)$ — the set of edges entering v.

A network $G = \{V, E, s, t, \mathbf{c} = \{c(e)\}_{e \in E}\}$ is a directed graph (V, E) with a source vertex s, a sink vertex t, and a set of non-negative capacities $\{c(e)\}_{e \in E}$ of edges.

A function $f : E \to \mathbf{R}$ is called a flow in *G* if for every vertex $v \in V - s - t$,

$$div_{f}(v) = \sum_{e \in E^{+}(v)} f(e) - \sum_{e \in E^{-}(v)} f(e) = 0.$$
(1)

A D F A 同 F A E F A E F A Q A

If $0 \le f(e) \le c(e)$ for every $e \in E$, then the flow is called feasible (for *G*).

Simple properties

Consider $\sum_{v \in V} div_f(v)$. If *f* is a flow, then by (1) this sum equals $div_f(s) + div_f(t)$.

Simple properties

Consider $\sum_{v \in V} div_f(v)$. If *f* is a flow, then by (1) this sum equals $div_f(s) + div_f(t)$.

On the other hand, every edge uv contributes f(uv) to

$$div_f(u) = \sum_{e \in E^+(u)} f(e) - \sum_{e \in E^-(u)} f(e)$$

and -f(uv) to

$$div_f(v) = \sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Therefore, $div_f(s) + div_f(t) = 0$. (*)

Simple properties

Consider $\sum_{v \in V} div_f(v)$. If *f* is a flow, then by (1) this sum equals $div_f(s) + div_f(t)$.

On the other hand, every edge uv contributes f(uv) to

$$div_f(u) = \sum_{e \in E^+(u)} f(e) - \sum_{e \in E^-(u)} f(e)$$

and -f(uv) to

$$\operatorname{div}_{f}(v) = \sum_{e \in E^{+}(v)} f(e) - \sum_{e \in E^{-}(v)} f(e).$$

Therefore, $div_f(s) + div_f(t) = 0$. (*)

The value $M(f) = div_f(s) = -div_f(t)$ is called the value of f. A flow with value zero is called circulation.

More definitions and a lemma

By definition, each flow *f* is a vector satisfying a system of linear equations and M(f) is a linear function of this vector. So, for any flows *f* and *g* and any reals α and β ,

 $M(\alpha f + \beta g) = \alpha M(f) + \beta M(g).$ (2)

More definitions and a lemma

By definition, each flow *f* is a vector satisfying a system of linear equations and M(f) is a linear function of this vector. So, for any flows *f* and *g* and any reals α and β ,

$$M(\alpha f + \beta g) = \alpha M(f) + \beta M(g).$$
(2)

A flow *f* is positive if $f(e) \ge 0$ for every $e \in E$ and there exists $e_0 \in E$ such that $f(e_0) > 0$.

We say that a flow *f* is a flow along a (directed) cycle (or along a (directed) *s*, *t*-path or *t*, *s*-path) if *f* is non-zero only on the edges of this cycle (*s*, *t*-path or *t*, *s*-path) and f(e) = f(e') for all *e*, *e'* in this cycle (*s*, *t*-path or *t*, *s*-path).

These flows are "simplest possible". By definition, a flow along a cycle is a circulation. It turns out that even most complicated flows are sums of these simple flows. Lemma 4.15. Every positive circulation f in a network G can be represented as the sum of at most |E(G)| - 1 positive flows along cycles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Lemma 4.15. Every positive circulation f in a network G can be represented as the sum of at most |E(G)| - 1 positive flows along cycles.

Proof. We use induction on the number *m* of the edges of *G*. The minimum possible number of edges is 2, and the only possible positive circulation with two edges is below.

Figure: Circulation with 2 edges.

(ロ) (同) (三) (三) (三) (○) (○)

Suppose the lemma holds for all circulations in networks with fewer than m edges, and let f be a positive circulation in a network G with m edges.

If $f(e_0) = 0$ for some $e_0 \in E$, then consider $G_0 = G - e_0$ and $f_0 = f|_{G_0}$. By the minimality of G, f_0 is the sum of at most $|E(G_0)| - 1 = m - 2$ positive flows along cycles. So, f is the sum of the same flows.

If $f(e_0) = 0$ for some $e_0 \in E$, then consider $G_0 = G - e_0$ and $f_0 = f|_{G_0}$. By the minimality of G, f_0 is the sum of at most $|E(G_0)| - 1 = m - 2$ positive flows along cycles. So, f is the sum of the same flows.

Thus we may assume that f(e) > 0 for every $e \in E$. Consider an arbitrary $e_1 = v_0v_1 \in E$. Since *f* is a circulation, there is an edge $e_2 = v_1v_2$ leaving v_1 . Similarly, there exists an edge $e_3 = v_2v_3$ leaving v_2 , and so on.

If $f(e_0) = 0$ for some $e_0 \in E$, then consider $G_0 = G - e_0$ and $f_0 = f|_{G_0}$. By the minimality of G, f_0 is the sum of at most $|E(G_0)| - 1 = m - 2$ positive flows along cycles. So, f is the sum of the same flows.

Thus we may assume that f(e) > 0 for every $e \in E$. Consider an arbitrary $e_1 = v_0v_1 \in E$. Since *f* is a circulation, there is an edge $e_2 = v_1v_2$ leaving v_1 . Similarly, there exists an edge $e_3 = v_2v_3$ leaving v_2 , and so on.

Let *k* be the minimum positive integer such that $v_k \in \{v_0, \ldots, v_{k-1}\}$. For definiteness, let $v_k = v_s$. Then $C = v_s v_{s+1} \ldots v_{k-1} v_k$ is a cycle in *G*.

Let $\rho = \min\{f(e) \mid e \in E(C)\}$, and $\varphi(C, \rho)$ be the flow along C of size ρ .

Consider $f_1 = f - \varphi(C, \rho)$. If $f_1 \equiv 0$, then *f* is the sum of one flow along a cycle (namely, along *C*).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $\rho = \min\{f(e) \mid e \in E(C)\}$, and $\varphi(C, \rho)$ be the flow along *C* of size ρ . Consider $f_1 = f - \varphi(C, \rho)$. If $f_1 \equiv 0$, then *f* is the sum of one

flow along a cycle (namely, along *C*).

Otherwise, f_1 is a positive flow and there exists $e_1 \in E(C)$ with $f_1(e_1) = 0$.

Due to the minimality of *G*, the flow $f_1 |_{G-e_1}$ can be represented as the sum of at most $|E(G - e_1)| - 1 = |E(G)| - 2$ positive flows along cycles.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $\rho = \min\{f(e) \mid e \in E(C)\}$, and $\varphi(C, \rho)$ be the flow along C of size ρ . Consider $f_1 = f - \varphi(C, \rho)$. If $f_1 \equiv 0$, then f is the sum of one flow along a cycle (namely, along C).

Otherwise, f_1 is a positive flow and there exists $e_1 \in E(C)$ with $f_1(e_1) = 0.$

Due to the minimality of G, the flow $f_1 \mid_{G-e_1}$ can be represented as the sum of at most $|E(G - e_1)| - 1 = |E(G)| - 2$ positive flows along cycles.

Adding $\varphi(C, \rho)$ to this sum, we find a representation for f, as claimed.

(ロ) (同) (三) (三) (三) (○) (○)

This proves the lemma.

Theorem 4.16. Every positive flow f in a network G can be represented as the sum of at most |E(G)| positive flows along cycles, along s, t-paths and along t, s-paths.

Theorem 4.16. Every positive flow f in a network G can be represented as the sum of at most |E(G)| positive flows along cycles, along s, t-paths and along t, s-paths.

Proof. If M(f) = 0, then *f* is a circulation. In this case we are done by Lemma 4.15.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 4.16. Every positive flow f in a network G can be represented as the sum of at most |E(G)| positive flows along cycles, along s, t-paths and along t, s-paths.

Proof. If M(f) = 0, then *f* is a circulation. In this case we are done by Lemma 4.15.

Case 1: M(f) > 0. Let G_0 be obtained from G by adding new edge $e_0 = ts$ and let f_0 differ from f only in that $f_0(e_0) = M(f)$.

Theorem 4.16. Every positive flow f in a network G can be represented as the sum of at most |E(G)| positive flows along cycles, along s, t-paths and along t, s-paths.

Proof. If M(f) = 0, then *f* is a circulation. In this case we are done by Lemma 4.15.

Case 1: M(f) > 0. Let G_0 be obtained from G by adding new edge $e_0 = ts$ and let f_0 differ from f only in that $f_0(e_0) = M(f)$.

Then f_0 is a circulation in G_0 . By Lemma 4.15, f_0 is the sum of at most $|E(G_0)| - 1 = |E(G)|$ positive flows along cycles, say along cycles C_1, \ldots, C_m where $m \le |E(G)|$. Delete edge e_0 from each C_i containing it. What remains in such a cycle is an *s*, *t*-path P_i . Thus *f* is the sum of the flows along paths P_i s and along cycles C_i s that do not contain e_0 . **Case 2:** M(f) < 0. Let G_1 be obtained from *G* by adding new edge $e_1 = st$ and let f_1 differ from *f* only in that $f_1(e_1) = -M(f)$. Then the argument is the same as in Case 1.

This proves Theorem 4.16.

Case 2: M(f) < 0. Let G_1 be obtained from G by adding new edge $e_1 = st$ and let f_1 differ from f only in that $f_1(e_1) = -M(f)$. Then the argument is the same as in Case 1.

This proves Theorem 4.16.

An example:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

Hence $f = \phi(C_1, 1) + \phi(P_1, 3) + \phi(P_2, 1) + \phi(P_3, 1)$.