
Flows in networks

Lecture 25



Definitions

For a digraph G = (V ,E) and v ∈ V , let E+(v) denote the set
of edges leaving v and E−(v) — the set of edges entering v .

A network G = {V ,E , s, t ,c = {c(e)}e∈E} is a directed graph
(V ,E) with a source vertex s, a sink vertex t , and a set of
non-negative capacities {c(e)}e∈E of edges.

A function f : E → R is called a flow in G if for every vertex
v ∈ V − s − t ,

divf (v) =
∑

e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e) = 0. (1)

If 0 ≤ f (e) ≤ c(e) for every e ∈ E , then the flow is called
feasible (for G).
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Simple properties
Consider

∑
v∈V divf (v).

If f is a flow, then by (1) this sum equals divf (s) + divf (t).

On the other hand, every edge uv contributes f (uv) to

divf (u) =
∑

e∈E+(u)

f (e)−
∑

e∈E−(u)

f (e)

and −f (uv) to

divf (v) =
∑

e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e).

Therefore, divf (s) + divf (t) = 0. (∗)

The value M(f ) = divf (s) = −divf (t) is called the value of f .
A flow with value zero is called circulation.
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More definitions and a lemma
By definition, each flow f is a vector satisfying a system of
linear equations and M(f ) is a linear function of this vector.
So, for any flows f and g and any reals α and β,

M(αf + βg) = αM(f ) + βM(g). (2)

A flow f is positive if f (e) ≥ 0 for every e ∈ E and there exists
e0 ∈ E such that f (e0) > 0.
We say that a flow f is a flow along a (directed) cycle (or along
a (directed) s, t-path or t , s-path ) if f is non-zero only on the
edges of this cycle (s, t-path or t , s-path) and f (e) = f (e′) for all
e,e′ in this cycle (s, t-path or t , s-path).

These flows are ”simplest possible”. By definition, a flow along
a cycle is a circulation. It turns out that even most complicated
flows are sums of these simple flows.
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Lemma 4.15. Every positive circulation f in a network G can be
represented as the sum of at most |E(G)| − 1 positive flows
along cycles.

Proof. We use induction on the number m of the edges of G.
The minimum possible number of edges is 2, and the only
possible positive circulation with two edges is below.

Figure: Circulation with 2 edges.

Suppose the lemma holds for all circulations in networks with
fewer than m edges, and let f be a positive circulation in a
network G with m edges.
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If f (e0) = 0 for some e0 ∈ E , then consider G0 = G − e0 and
f0 = f |G0 . By the minimality of G, f0 is the sum of at most
|E(G0)| − 1 = m − 2 positive flows along cycles. So, f is the
sum of the same flows.

Thus we may assume that f (e) > 0 for every e ∈ E . Consider
an arbitrary e1 = v0v1 ∈ E . Since f is a circulation, there is an
edge e2 = v1v2 leaving v1. Similarly, there exists an edge
e3 = v2v3 leaving v2, and so on.

Let k be the minimum positive integer such that
vk ∈ {v0, . . . , vk−1}. For definiteness, let vk = vs. Then
C = vsvs+1 . . . vk−1vk is a cycle in G.
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Let ρ = min{f (e) | e ∈ E(C)}, and φ(C, ρ) be the flow along C
of size ρ.
Consider f1 = f − φ(C, ρ). If f1 ≡ 0, then f is the sum of one
flow along a cycle (namely, along C).

Otherwise, f1 is a positive flow and there exists e1 ∈ E(C) with
f1(e1) = 0.
Due to the minimality of G, the flow f1 |G−e1 can be represented
as the sum of at most |E(G − e1)| − 1 = |E(G)| − 2 positive
flows along cycles.

Adding φ(C, ρ) to this sum, we find a representation for f , as
claimed.
This proves the lemma.
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A structure theorem on flows

Theorem 4.16. Every positive flow f in a network G can be
represented as the sum of at most |E(G)| positive flows along
cycles, along s, t-paths and along t , s-paths.

Proof. If M(f ) = 0, then f is a circulation. In this case we are
done by Lemma 4.15.

Case 1: M(f ) > 0. Let G0 be obtained from G by adding new
edge e0 = ts and let f0 differ from f only in that f0(e0) = M(f ).

Then f0 is a circulation in G0. By Lemma 4.15, f0 is the sum of
at most |E(G0)| − 1 = |E(G)| positive flows along cycles, say
along cycles C1, . . . ,Cm where m ≤ |E(G)|. Delete edge e0
from each Ci containing it. What remains in such a cycle is an
s, t-path Pi . Thus f is the sum of the flows along paths Pis and
along cycles Cjs that do not contain e0.
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Case 2: M(f ) < 0. Let G1 be obtained from G by adding new
edge e1 = st and let f1 differ from f only in that f1(e1) = −M(f ).
Then the argument is the same as in Case 1.

This proves Theorem 4.16.

An example:
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Hence f = ϕ(C1,1) + ϕ(P1,3) + ϕ(P2,1) + ϕ(P3,1).


