Flows in networks, Il

Lecture 26



Lemma 4.15. Every positive circulation f in a network G can be
represented as the sum of at most |E(G)| — 1 positive flows
along cycles.

Theorem 4.16. Every positive flow f in a network G can be
represented as the sum of at most |E(G)| positive flows along
cycles, along s, t-paths and along t, s-paths.
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Hence f = ¢(C1, 1)+ ¢(P1,3) + &(P2, 1) + (Ps, 1)



A function f : E — Ris called a flow in G if for every vertex
veV-—-s—t,

divi(v)= Y _ fle)— >  f(e)=0.
ecE+(v) ecE—(v)

If 0 < f(e) < c(e) for every e € E, then the flow is called
feasible (for G).



A function f : E — Ris called a flow in G if for every vertex
veV-—-s—t,

divi(v)= > fle)— > f(e)=0. (1)

ecE+(v) ecE—(v)

If 0 < f(e) < c(e) for every e € E, then the flow is called
feasible (for G).

An (s, t)-cut inanetwork G= (V,E,s,t,{c(e)}eck) is @
partition (S, S) of Vinto sets S and S such that s € S and
teS.

The capacity of (S, S) is
c(S,8) = >, ). 2

xycE:xeS,yeS



Important inequality

Claim 4.17. For every feasible flow f in in a network
G=(V,E, s, t {c(e)}ece) and every s, t-cut (S, S) of V,

M(f) < ¢(S, S).
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Claim 4.17. For every feasible flow f in in a network
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Proof. Consider F(f,S) = >, s divi(v).

By the definition of a flow, since s€ Sand t ¢ S,

F(f,S) = div¢(s) = M(f).



Important inequality

Claim 4.17. For every feasible flow f in in a network
G=(V,E, s, t {c(e)}ece) and every s, t-cut (S, S) of V,

M(f) < ¢(S, S). (3)
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Proof. Consider F(f,S) = >, s divi(v).
By the definition of a flow, since s€ Sand t ¢ S,
F(f,S) = div¢(s) = M(f).

On the other hand, by (1),

F(f,S)Z( RCEEY f(e)).
v)

veS \ecE*(v) ecE—(



So,

F(f,9) =)

veS

(

Y ofe)- > f(e)

ecE+(v) ecE—(v)

) |



So,

veS \ecE+(v) ecE—(v)

F(f,S)Z( Y ofle)- > f(e)). (4)

Let e = xy. Then e contributes f(e) to div¢(x) and —f(e) to
dive(y).

So, if {x,y} C S, then the net contribution of e is

f(e) — f(e) = 0.

Also, if {x,y} C S, then the net contribution of e is 0.

If x € Sand y € S, then e contributes f(e) into the RHS of (4).
Finally, if y € Sand x € S, then e contributes —f(e) .
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F(f,S)Z( Y ofle)- > f(e)). (4)

Let e = xy. Then e contributes f(e) to div¢(x) and —f(e) to

dive(y).
So, if {x,y} C S, then the net contribution of e is
f(e) — f(e) = 0.

Also, if {x,y} C S then the net contribution of e is 0.
If x € Sand y € S, then e contributes f(e) into the RHS of (4).
Finally, if y € Sand x € S, then e contributes —f(e) .

Hence £(f, S) = nyeE:xeS,yeg Fxy) - Zyer:xeS,ye? F(yx).

Since 0 < f(e) < c(e) for each e € E, the last sum is at most
> c(xy) =¢(S,S). So, M(f) < ¢(S,S).
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