
Flows in networks, II

Lecture 26



Lemma 4.15. Every positive circulation f in a network G can be
represented as the sum of at most |E(G)| − 1 positive flows
along cycles.

Theorem 4.16. Every positive flow f in a network G can be
represented as the sum of at most |E(G)| positive flows along
cycles, along s, t-paths and along t , s-paths.

An example:
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Hence f = ϕ(C1,1) + ϕ(P1,3) + ϕ(P2,1) + ϕ(P3,1).



A function f : E → R is called a flow in G if for every vertex
v ∈ V − s − t ,

divf (v) =
∑

e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e) = 0. (1)

If 0 ≤ f (e) ≤ c(e) for every e ∈ E , then the flow is called
feasible (for G).

An (s, t)-cut in a network G = (V ,E , s, t , {c(e)}e∈E) is a
partition (S,S) of V into sets S and S such that s ∈ S and
t ∈ S.

The capacity of (S,S) is

c(S,S) =
∑

xy∈E :x∈S,y∈S

c(xy). (2)
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Important inequality
Claim 4.17. For every feasible flow f in in a network
G = (V ,E , s, t , {c(e)}e∈E) and every s, t-cut (S,S) of V ,

M(f ) ≤ c(S,S). (3)

Proof. Consider F (f ,S) =
∑

v∈S divf (v).
By the definition of a flow, since s ∈ S and t /∈ S,
F (f ,S) = divf (s) = M(f ).

On the other hand, by (1),

F (f ,S) =
∑
v∈S

 ∑
e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e)

 .
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So,

F (f ,S) =
∑
v∈S

 ∑
e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e)

 . (4)

Let e = xy . Then e contributes f (e) to divf (x) and −f (e) to
divf (y).
So, if {x , y} ⊂ S, then the net contribution of e is
f (e)− f (e) = 0.
Also, if {x , y} ⊂ S, then the net contribution of e is 0.
If x ∈ S and y ∈ S, then e contributes f (e) into the RHS of (4).
Finally, if y ∈ S and x ∈ S, then e contributes −f (e) .

Hence F (f ,S) =
∑

xy∈E :x∈S,y∈S f (xy)−
∑

yx∈E :x∈S,y∈S f (yx).

Since 0 ≤ f (e) ≤ c(e) for each e ∈ E , the last sum is at most∑
xy∈E :x∈S,y∈S

c(xy) = c(S,S). So, M(f ) ≤ c(S,S).
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