Flows in networks, II

Lecture 26

Lemma 4.15. Every positive circulation f in a network G can be represented as the sum of at most $|E(G)|-1$ positive flows along cycles.

Theorem 4.16. Every positive flow f in a network G can be represented as the sum of at most $|E(G)|$ positive flows along cycles, along s, t-paths and along t, s-paths.

Lemma 4.15. Every positive circulation f in a network G can be represented as the sum of at most $|E(G)|-1$ positive flows along cycles.

Theorem 4.16. Every positive flow f in a network G can be represented as the sum of at most $|E(G)|$ positive flows along cycles, along s, t-paths and along t, s-paths.

An example:

Hence $f=\phi\left(C_{1}, 1\right)+\phi\left(P_{1}, 3\right)+\phi\left(P_{2}, 1\right)+\phi\left(P_{3}, 1\right)$.

A function $f: E \rightarrow \mathbf{R}$ is called a flow in G if for every vertex $v \in V-s-t$,

$$
\begin{equation*}
\operatorname{div}_{f}(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)=0 \tag{1}
\end{equation*}
$$

If $0 \leq f(e) \leq \mathbf{c}(e)$ for every $e \in E$, then the flow is called feasible (for G).

A function $f: E \rightarrow \mathbf{R}$ is called a flow in G if for every vertex $v \in V-s-t$,

$$
\begin{equation*}
\operatorname{div}_{f}(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)=0 \tag{1}
\end{equation*}
$$

If $0 \leq f(e) \leq \mathbf{c}(e)$ for every $e \in E$, then the flow is called feasible (for G).

An (s, t)-cut in a network $G=\left(V, E, s, t,\{\mathbf{c}(e)\}_{e \in E}\right)$ is a partition (S, \bar{S}) of V into sets S and \bar{S} such that $s \in S$ and $t \in \bar{S}$.

The capacity of (S, \bar{S}) is

$$
\begin{equation*}
\mathbf{c}(S, \bar{S})=\sum_{x y \in E: x \in S, y \in \bar{S}} \mathbf{c}(x y) \tag{2}
\end{equation*}
$$

Important inequality

Claim 4.17. For every feasible flow f in in a network $G=\left(V, E, s, t,\{\mathbf{c}(e)\}_{e \in E}\right)$ and every s, t-cut (S, \bar{S}) of V,

$$
\begin{equation*}
M(f) \leq \mathbf{c}(S, \bar{S}) \tag{3}
\end{equation*}
$$

Important inequality

Claim 4.17. For every feasible flow f in in a network $G=\left(V, E, s, t,\{\mathbf{c}(e)\}_{e \in E}\right)$ and every s, t-cut (S, \bar{S}) of V,

$$
\begin{equation*}
M(f) \leq \mathbf{c}(S, \bar{S}) \tag{3}
\end{equation*}
$$

Proof. Consider $F(f, S)=\sum_{v \in S} \operatorname{div}_{f}(v)$.
By the definition of a flow, since $s \in S$ and $t \notin S$, $F(f, S)=\operatorname{div}_{f}(s)=M(f)$.

Important inequality

Claim 4.17. For every feasible flow f in in a network $G=\left(V, E, s, t,\{\mathbf{c}(e)\}_{e \in E}\right)$ and every s, t-cut (S, \bar{S}) of V,

$$
\begin{equation*}
M(f) \leq \mathbf{c}(S, \bar{S}) \tag{3}
\end{equation*}
$$

Proof. Consider $F(f, S)=\sum_{v \in S} \operatorname{div}_{f}(v)$.
By the definition of a flow, since $s \in S$ and $t \notin S$,
$F(f, S)=\operatorname{div}_{f}(s)=M(f)$.
On the other hand, by (1),

$$
F(f, S)=\sum_{v \in S}\left(\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)\right)
$$

So,

$$
\begin{equation*}
F(f, S)=\sum_{v \in S}\left(\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)\right) . \tag{4}
\end{equation*}
$$

So,

$$
\begin{equation*}
F(f, S)=\sum_{v \in S}\left(\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)\right) \tag{4}
\end{equation*}
$$

Let $e=x y$. Then e contributes $f(e)$ to $\operatorname{div}_{f}(x)$ and $-f(e)$ to $\operatorname{div}_{f}(y)$.
So, if $\{x, y\} \subset S$, then the net contribution of e is $f(e)-f(e)=0$.
Also, if $\{x, y\} \subset \bar{S}$, then the net contribution of e is 0 .
If $x \in S$ and $y \in \bar{S}$, then e contributes $f(e)$ into the RHS of (4).
Finally, if $y \in S$ and $x \in \bar{S}$, then e contributes $-f(e)$.

So,

$$
\begin{equation*}
F(f, S)=\sum_{v \in S}\left(\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)\right) \tag{4}
\end{equation*}
$$

Let $e=x y$. Then e contributes $f(e)$ to $\operatorname{div}_{f}(x)$ and $-f(e)$ to $\operatorname{div}_{f}(y)$.
So, if $\{x, y\} \subset S$, then the net contribution of e is $f(e)-f(e)=0$.
Also, if $\{x, y\} \subset \bar{S}$, then the net contribution of e is 0 .
If $x \in S$ and $y \in \bar{S}$, then e contributes $f(e)$ into the RHS of (4).
Finally, if $y \in S$ and $x \in \bar{S}$, then e contributes $-f(e)$.
Hence $F(f, S)=\sum_{x y \in E: x \in S, y \in \bar{S}} f(x y)-\sum_{y x \in E: x \in S, y \in \bar{S}} f(y x)$.

So,

$$
\begin{equation*}
F(f, S)=\sum_{v \in S}\left(\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)\right) \tag{4}
\end{equation*}
$$

Let $e=x y$. Then e contributes $f(e)$ to $\operatorname{div}_{f}(x)$ and $-f(e)$ to $\operatorname{div}_{f}(y)$.
So, if $\{x, y\} \subset S$, then the net contribution of e is $f(e)-f(e)=0$.
Also, if $\{x, y\} \subset \bar{S}$, then the net contribution of e is 0 .
If $x \in S$ and $y \in \bar{S}$, then e contributes $f(e)$ into the RHS of (4).
Finally, if $y \in S$ and $x \in \bar{S}$, then e contributes $-f(e)$.
Hence $F(f, S)=\sum_{x y \in E: x \in S, y \in \bar{S}} f(x y)-\sum_{y x \in E: x \in S, y \in \bar{S}} f(y x)$.
Since $0 \leq f(e) \leq \mathbf{c}(e)$ for each $e \in E$, the last sum is at most $\sum \mathbf{c}(x y)=\mathbf{c}(S, \bar{S})$.
$x y \in E: x \in S, y \in \bar{S}$

So,

$$
\begin{equation*}
F(f, S)=\sum_{v \in S}\left(\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)\right) \tag{4}
\end{equation*}
$$

Let $e=x y$. Then e contributes $f(e)$ to $\operatorname{div}_{f}(x)$ and $-f(e)$ to $\operatorname{div}_{f}(y)$.
So, if $\{x, y\} \subset S$, then the net contribution of e is $f(e)-f(e)=0$.
Also, if $\{x, y\} \subset \bar{S}$, then the net contribution of e is 0 .
If $x \in S$ and $y \in \bar{S}$, then e contributes $f(e)$ into the RHS of (4).
Finally, if $y \in S$ and $x \in \bar{S}$, then e contributes $-f(e)$.
Hence $F(f, S)=\sum_{x y \in E: x \in S, y \in \bar{S}} f(x y)-\sum_{y x \in E: x \in S, y \in \bar{S}} f(y x)$.
Since $0 \leq f(e) \leq \mathbf{c}(e)$ for each $e \in E$, the last sum is at most $\sum \quad \mathbf{c}(x y)=\mathbf{c}(S, \bar{S})$. So, $M(f) \leq \mathbf{c}(S, \bar{S})$.
$x y \in E: x \in S, y \in \bar{S}$

