Flows in networks, III

Lecture 27

A function $f : E \to \mathbf{R}$ is called a flow in *G* if for every vertex $v \in V - s - t$,

$$div_f(v) = \sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e) = 0.$$
(1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

If $0 \le f(e) \le c(e)$ for every $e \in E$, then the flow is called feasible (for *G*).

A function $f : E \to \mathbf{R}$ is called a flow in *G* if for every vertex $v \in V - s - t$,

$$div_f(v) = \sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e) = 0.$$
(1)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If $0 \le f(e) \le c(e)$ for every $e \in E$, then the flow is called feasible (for *G*).

An (s, t)-cut in a network $G = (V, E, s, t, {c(e)}_{e \in E})$ is a partition (S, \overline{S}) of V into sets S and \overline{S} such that $s \in S$ and $t \in \overline{S}$.

A function $f : E \to \mathbf{R}$ is called a flow in *G* if for every vertex $v \in V - s - t$,

$$div_f(v) = \sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e) = 0.$$
(1)

If $0 \le f(e) \le c(e)$ for every $e \in E$, then the flow is called feasible (for *G*).

An (s, t)-cut in a network $G = (V, E, s, t, {c(e)}_{e \in E})$ is a partition (S, \overline{S}) of V into sets S and \overline{S} such that $s \in S$ and $t \in \overline{S}$.

The capacity of (S, \overline{S}) is

$$\mathbf{c}(S,\overline{S}) = \sum_{xy \in E: x \in S, y \in \overline{S}} \mathbf{c}(xy).$$
(2)

Important inequality

Claim 4.17. For every feasible flow *f* in in a network $G = (V, E, s, t, \{c(e)\}_{e \in E})$ and every *s*, *t*-cut (S, \overline{S}) of *V*,

 $M(f) \le \mathbf{c}(S, \overline{S}). \tag{3}$

Important inequality

Claim 4.17. For every feasible flow *f* in in a network $G = (V, E, s, t, {\mathbf{c}(e)}_{e \in E})$ and every *s*, *t*-cut (S, \overline{S}) of *V*,

 $M(f) \le \mathbf{c}(S, \overline{S}). \tag{3}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof. Consider $F(f, S) = \sum_{v \in S} div_f(v)$. By the definition of a flow, since $s \in S$ and $t \notin S$, $F(f, S) = div_f(s) = M(f)$.

Important inequality

Claim 4.17. For every feasible flow *f* in in a network $G = (V, E, s, t, {\mathbf{c}(e)}_{e \in E})$ and every *s*, *t*-cut (S, \overline{S}) of *V*,

 $M(f) \le \mathbf{c}(S, \overline{S}). \tag{3}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof. Consider $F(f, S) = \sum_{v \in S} div_f(v)$. By the definition of a flow, since $s \in S$ and $t \notin S$, $F(f, S) = div_f(s) = M(f)$.

On the other hand, by (1),

$$F(f, S) = \sum_{v \in S} \left(\sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e) \right)$$

 $F(f,S) = \sum_{v \in S} \left(\sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e) \right).$ (4)

$$F(f,S) = \sum_{v \in S} \left(\sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e) \right).$$
(4)

Let e = xy. Then e contributes f(e) to $div_f(x)$ and -f(e) to $div_f(y)$. So, if $\{x, y\} \subset S$, then the net contribution of e is f(e) - f(e) = 0. Also, if $\{x, y\} \subset \overline{S}$, then the net contribution of e is 0. If $x \in S$ and $y \in \overline{S}$, then e contributes f(e) into the RHS of (4). Finally, if $y \in S$ and $x \in \overline{S}$, then e contributes -f(e).

$$F(f,S) = \sum_{v \in S} \left(\sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e) \right).$$
(4)

Let e = xy. Then e contributes f(e) to $div_f(x)$ and -f(e) to $div_f(y)$. So, if $\{x, y\} \subset S$, then the net contribution of e is f(e) - f(e) = 0. Also, if $\{x, y\} \subset \overline{S}$, then the net contribution of e is 0. If $x \in S$ and $y \in \overline{S}$, then e contributes f(e) into the RHS of (4). Finally, if $y \in S$ and $x \in \overline{S}$, then e contributes -f(e).

Hence $F(f, S) = \sum_{xy \in E: x \in S, y \in \overline{S}} f(xy) - \sum_{yx \in E: x \in S, y \in \overline{S}} f(yx)$.

$$F(f,S) = \sum_{v \in S} \left(\sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e) \right).$$
(4)

Let e = xy. Then e contributes f(e) to $div_f(x)$ and -f(e) to $div_f(y)$. So, if $\{x, y\} \subset S$, then the net contribution of e is f(e) - f(e) = 0. Also, if $\{x, y\} \subset \overline{S}$, then the net contribution of e is 0. If $x \in S$ and $y \in \overline{S}$, then e contributes f(e) into the RHS of (4). Finally, if $y \in S$ and $x \in \overline{S}$, then e contributes -f(e). Hence $F(f, S) = \sum_{xy \in E: x \in S, y \in \overline{S}} f(xy) - \sum_{yx \in E: x \in S, y \in \overline{S}} f(yx)$.

Since $0 \le f(e) \le \mathbf{c}(e)$ for each $e \in E$, the last sum is at most $\sum_{\substack{Xy \in E: x \in S, y \in \overline{S}}} \mathbf{c}(Xy) = \mathbf{c}(S, \overline{S}).$

$$F(f,S) = \sum_{v \in S} \left(\sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e) \right).$$
(4)

Let e = xy. Then e contributes f(e) to $div_f(x)$ and -f(e) to $div_f(y)$. So, if $\{x, y\} \subset S$, then the net contribution of e is f(e) - f(e) = 0. Also, if $\{x, y\} \subset \overline{S}$, then the net contribution of e is 0. If $x \in S$ and $y \in \overline{S}$, then e contributes f(e) into the RHS of (4). Finally, if $y \in S$ and $x \in \overline{S}$, then e contributes -f(e). Hence $F(f, S) = \sum_{xy \in E: x \in S, y \in \overline{S}} f(xy) - \sum_{yx \in E: x \in S, y \in \overline{S}} f(yx)$.

Since $0 \le f(e) \le c(e)$ for each $e \in E$, the last sum is at most $\sum_{\substack{xy \in E: x \in S, y \in \overline{S}}} c(xy) = c(S, \overline{S}).$ So, $M(f) \le c(S, \overline{S}).$

Max-flow min-cut Theorem

Theorem 4.18. For every network $G = (V, E, s, t, {c(e)}_{e \in E})$, maximum of M(f) over all feasible flows equals to the minimum of $c(S, \overline{S})$ over all *s*, *t*-cuts (S, \overline{S}) .

Max-flow min-cut Theorem

Theorem 4.18. For every network $G = (V, E, s, t, {c(e)}_{e \in E})$, maximum of M(f) over all feasible flows equals to the minimum of $c(S, \overline{S})$ over all *s*, *t*-cuts (S, \overline{S}) .

An idea for Ford-Fulkerson Algorithm:

1. Finding the maximum M(f) for a feasible flow in a network G is finding the maximum of a linear function $div_f(s)$ on the closed bounded set formed by the inequalities $0 \le f(e) \le \mathbf{c}(e)$ for every $e \in E$ and equations $div_f(v) = 0$ for each $v \in V - s - t$. Since each continuous function on a compact set achieves its maximum, the maximum flow does exist.

・ロト・日本・日本・日本・日本

Max-flow min-cut Theorem

Theorem 4.18. For every network $G = (V, E, s, t, {c(e)}_{e \in E})$, maximum of M(f) over all feasible flows equals to the minimum of $c(S, \overline{S})$ over all *s*, *t*-cuts (S, \overline{S}) .

An idea for Ford-Fulkerson Algorithm:

1. Finding the maximum M(f) for a feasible flow in a network G is finding the maximum of a linear function $div_f(s)$ on the closed bounded set formed by the inequalities $0 \le f(e) \le \mathbf{c}(e)$ for every $e \in E$ and equations $div_f(v) = 0$ for each $v \in V - s - t$. Since each continuous function on a compact set achieves its maximum, the maximum flow does exist.

2. Let *f* be a feasible flow in *G* with the maximum M(f). By Theorem 4.17, $f = \sum_{i=1}^{k} f_i$, where each f_i is either (a) a flow along a cycle, or (b) a flow along a *t*, *s*-path, or (c) a flow along an *s*, *t*-path.

An idea for Ford-Fulkerson Algorithm

1. The maximum flow does exist.

2. Let *f* be a feasible flow in *G* with the maximum M(f). By Theorem 4.16, $f = \sum_{i=1}^{k} f_i$, where each f_i is either (a) a flow along a cycle, or (b) a flow along a *t*, *s*-path, or (c) a flow along an *s*, *t*-path.

If some f_{i_0} satisfies (a), then $f - f_{i_0}$ has the same value $M(f - f_{i_0})$ and is feasible. If some f_{i_0} satisfies (b), then $f - f_{i_0}$ has even larger $M(f - f_{i_0})$ and is feasible.

(日) (日) (日) (日) (日) (日) (日)

An idea for Ford-Fulkerson Algorithm

1. The maximum flow does exist.

2. Let *f* be a feasible flow in *G* with the maximum M(f). By Theorem 4.16, $f = \sum_{i=1}^{k} f_i$, where each f_i is either (a) a flow along a cycle, or (b) a flow along a *t*, *s*-path, or (c) a flow along an *s*, *t*-path.

If some f_{i_0} satisfies (a), then $f - f_{i_0}$ has the same value $M(f - f_{i_0})$ and is feasible. If some f_{i_0} satisfies (b), then $f - f_{i_0}$ has even larger $M(f - f_{i_0})$ and is feasible.

Thus, it is enough to seek *f* in the form $f = \sum_{i=1}^{k} f_i$, where each f_i is a flow along an *s*, *t*-path.

Ford-Fulkerson Algorithm with an example

Figure: Network and a starting flow f_1 ; $M(f_1) = 3$.

Given a feasible flow f in a network G, the residue network G(f) has V(G(f)) = V and $xy \in E(G(f))$ iff

either $xy \in E$ and $f(xy) < \mathbf{c}(xy)$ (then $\mathbf{c}_{\mathbf{f}}(xy) = \mathbf{c}(xy) - f(xy)$),

or $yx \in E$ and f(yx) > 0 (in this case, $c_f(xy) = f(yx)$).

Ford-Fulkerson Algorithm with an example, 2

Figure: First residue network G_{f1}.

If G_f has an s, t-path P and $\rho = \min{\{\mathbf{c}_f(xy) : xy \in E(P)\}}$, then instead of f, consider $f' = f + \phi(P, \rho)$ and repeat. Note $M(f') = M(f) + \rho > M(f)$.

(日) (日) (日) (日) (日) (日) (日)

Ford-Fulkerson Algorithm with an example, 2

Figure: First residue network G_{f1}.

If G_f has an s, t-path P and $\rho = \min\{\mathbf{c_f}(xy) : xy \in E(P)\}$, then instead of f, consider $f' = f + \phi(P, \rho)$ and repeat. Note $M(f') = M(f) + \rho > M(f)$. Here we have e.g. $P_1 = sv_4v_2v_1v_5t$ and

 $\rho_1 = \min\{2, 1, 3, 3, 3\} = 1$. So $f_2 = f_1 + \phi(P_1, 1)$.

Second iteration

Figure: The second flow f_2 and the second residue network G_{f_2} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

We have $M(f_2) = 4$. The residue network has an *s*, *t*-path $P_2 = sv_3v_2v_1v_5t$ and $\rho_2 = \min\{1, 2, 2, 2, 2\} = 1$.

Hence $f_3 = f_2 + \phi(P_2, 1)$.

Third iteration

Figure: The third flow f_3 and the third residue network G_{f_3} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

We have $M(f_3) = 5$. The residue network has an *s*, *t*-path $P_3 = sv_4v_3v_2v_1v_5t$ and $\rho_3 = \min\{1, 1, 1, 1, 1\} = 1$.

Hence $f_4 = f_3 + \phi(P_3, 1)$.

Last iteration

Figure: The fourth flow f_4 and the fourth residue network G_{f_4} .

We have $M(f_4) = 6$. The residue network G_{f_4} has no *s*, *t*-paths. Hence, there is a set *S*, namely $S = \{s\}$, such that $s \in S$, $t \notin S$ and G_{f_4} has no edges from *S* to \overline{S} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Last iteration

Figure: The fourth flow f_4 and the fourth residue network G_{f_4} .

We have $M(f_4) = 6$. The residue network G_{f_4} has no *s*, *t*-paths. Hence, there is a set *S*, namely $S = \{s\}$, such that $s \in S$, $t \notin S$ and G_{f_4} has no edges from *S* to \overline{S} .

We check that $\mathbf{c}(S, \overline{S}) = 6 = M(f_4)$. This certifies that both, f_4 and (S, \overline{S}) are optimal.