
Flows in networks, III

Lecture 27



A function f : E → R is called a flow in G if for every vertex
v ∈ V − s − t ,

divf (v) =
∑

e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e) = 0. (1)

If 0 ≤ f (e) ≤ c(e) for every e ∈ E , then the flow is called
feasible (for G).

An (s, t)-cut in a network G = (V ,E , s, t , {c(e)}e∈E) is a
partition (S,S) of V into sets S and S such that s ∈ S and
t ∈ S.

The capacity of (S,S) is

c(S,S) =
∑

xy∈E :x∈S,y∈S

c(xy). (2)
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Important inequality
Claim 4.17. For every feasible flow f in in a network
G = (V ,E , s, t , {c(e)}e∈E) and every s, t-cut (S,S) of V ,

M(f ) ≤ c(S,S). (3)

Proof. Consider F (f ,S) =
∑

v∈S divf (v).
By the definition of a flow, since s ∈ S and t /∈ S,
F (f ,S) = divf (s) = M(f ).

On the other hand, by (1),

F (f ,S) =
∑
v∈S

 ∑
e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e)

 .
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So,

F (f ,S) =
∑
v∈S

 ∑
e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e)

 . (4)

Let e = xy . Then e contributes f (e) to divf (x) and −f (e) to
divf (y).
So, if {x , y} ⊂ S, then the net contribution of e is
f (e)− f (e) = 0.
Also, if {x , y} ⊂ S, then the net contribution of e is 0.
If x ∈ S and y ∈ S, then e contributes f (e) into the RHS of (4).
Finally, if y ∈ S and x ∈ S, then e contributes −f (e) .

Hence F (f ,S) =
∑

xy∈E :x∈S,y∈S f (xy)−
∑

yx∈E :x∈S,y∈S f (yx).

Since 0 ≤ f (e) ≤ c(e) for each e ∈ E , the last sum is at most∑
xy∈E :x∈S,y∈S

c(xy) = c(S,S). So, M(f ) ≤ c(S,S).
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Max-flow min-cut Theorem
Theorem 4.18. For every network G = (V ,E , s, t , {c(e)}e∈E),
maximum of M(f ) over all feasible flows equals to the minimum
of c(S,S) over all s, t-cuts (S,S).

An idea for Ford-Fulkerson Algorithm:
1. Finding the maximum M(f ) for a feasible flow in a network G
is finding the maximum of a linear function divf (s) on the closed
bounded set formed by the inequalities 0 ≤ f (e) ≤ c(e) for
every e ∈ E and equations divf (v) = 0 for each v ∈ V − s − t .
Since each continuous function on a compact set achieves its
maximum, the maximum flow does exist.

2. Let f be a feasible flow in G with the maximum M(f ). By
Theorem 4.17, f =

∑k
i=1 fi , where each fi is either

(a) a flow along a cycle, or
(b) a flow along a t , s-path, or
(c) a flow along an s, t-path.
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(a) a flow along a cycle, or
(b) a flow along a t , s-path, or
(c) a flow along an s, t-path.

If some fi0 satisfies (a), then f − fi0 has the same value
M(f − fi0) and is feasible.
If some fi0 satisfies (b), then f − fi0 has even larger M(f − fi0)
and is feasible.

Thus, it is enough to seek f in the form f =
∑k

i=1 fi , where each
fi is a flow along an s, t-path.
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Ford-Fulkerson Algorithm with an example

Figure: Network and a starting flow f1; M(f1) = 3.

Given a feasible flow f in a network G, the residue network
G(f ) has V (G(f )) = V and xy ∈ E(G(f )) iff

either xy ∈ E and f (xy) < c(xy) (then cf(xy) = c(xy)− f (xy)),

or yx ∈ E and f (yx) > 0 (in this case, cf(xy) = f (yx)).



Ford-Fulkerson Algorithm with an example, 2

Figure: First residue network Gf1 .

If Gf has an s, t-path P and ρ = min{cf(xy) : xy ∈ E(P)}, then
instead of f , consider f ′ = f + ϕ(P, ρ) and repeat. Note
M(f ′) = M(f ) + ρ > M(f ).

Here we have e.g. P1 = sv4v2v1v5t and
ρ1 = min{2,1,3,3,3} = 1. So f2 = f1 + ϕ(P1,1).
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Figure: First residue network Gf1 .

If Gf has an s, t-path P and ρ = min{cf(xy) : xy ∈ E(P)}, then
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Second iteration

Figure: The second flow f2 and the second residue network Gf2 .

We have M(f2) = 4. The residue network has an s, t-path
P2 = sv3v2v1v5t and ρ2 = min{1,2,2,2,2} = 1.

Hence f3 = f2 + ϕ(P2,1).



Third iteration

Figure: The third flow f3 and the third residue network Gf3 .

We have M(f3) = 5. The residue network has an s, t-path
P3 = sv4v3v2v1v5t and ρ3 = min{1,1,1,1,1} = 1.

Hence f4 = f3 + ϕ(P3,1).



Last iteration

Figure: The fourth flow f4 and the fourth residue network Gf4 .

We have M(f4) = 6. The residue network Gf4 has no s, t-paths.
Hence, there is a set S, namely S = {s}, such that
s ∈ S, t /∈ S and Gf4 has no edges from S to S.

We check that c(S,S) = 6 = M(f4).
This certifies that both, f4 and (S,S) are optimal.
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