Flows in networks, Il
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A function f : E — Ris called a flow in G if for every vertex
veV-—-s—t,
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An (s, t)-cut inanetwork G= (V,E,s,t,{c(e)}eck) is @
partition (S, S) of Vinto sets S and S such that s € S and
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xycE:xeS,yeS



Important inequality

Claim 4.17. For every feasible flow f in in a network
G=(V,E, s, t {c(e)}ece) and every s, t-cut (S, S) of V,

M(f) < ¢(S, S).
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Proof. Consider F(f,S) = >, s divi(v).
By the definition of a flow, since s€ Sand t ¢ S,
F(f,S) = div¢(s) = M(f).

On the other hand, by (1),

F(f,S)Z( RCEEY f(e)).
v)
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So,

F(f,9) =)

veS
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So,

veS \ecE+(v) ecE—(v)

F(f,S)Z( Y ofle)- > f(e)). (4)

Let e = xy. Then e contributes f(e) to div¢(x) and —f(e) to
dive(y).

So, if {x,y} C S, then the net contribution of e is

f(e) — f(e) = 0.

Also, if {x,y} C S, then the net contribution of e is 0.

If x € Sand y € S, then e contributes f(e) into the RHS of (4).
Finally, if y € Sand x € S, then e contributes —f(e) .
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Finally, if y € Sand x € S, then e contributes —f(e) .

Hence £(f, S) = nyeE:xeS,yeg Fxy) - Zyer:xeS,ye? F(yx).

Since 0 < f(e) < c(e) for each e € E, the last sum is at most
> c(xy) =¢(S,S). So, M(f) < ¢(S,S).
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Max-flow min-cut Theorem

Theorem 4.18. For every network G = (V, E, s, t,{c(€)}ecE):
maximum of M(f) over all feasible flows equals to the minimum
of ¢(S, S) over all s, t-cuts (S, S).
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every e € E and equations div¢(v) = 0foreachve V —s—t.
Since each continuous function on a compact set achieves its
maximum, the maximum flow does exist.
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An idea for Ford-Fulkerson Algorithm

1. The maximum flow does exist.

2. Let f be a feasible flow in G with the maximum M(f). By
Theorem 4.16, f =S¥ . f., where each f; is either

(a) a flow along a cycle, or

(b) a flow along a t, s-path, or

(c) a flow along an s, t-path.

If some f;, satisfies (a), then f — f; has the same value

M(f — f;,) and is feasible.

If some f;, satisfies (b), then f — f; has even larger M(f — f;)
and is feasible.

Thus, it is enough to seek f in the form f = ZL fi, where each
f; is a flow along an s, t-path.



Ford-Fulkerson Algorithm with an example

Figure: Network and a starting flow f;; M(f;) = 3.

Given a feasible flow f in a network G, the residue network
G(f) has V(G(f)) = V and xy € E(G(f)) iff

either xy € E and f(xy) < ¢(xy) (then c¢(xy) = c(xy) — f(xy)),
or yx € E and f(yx) > 0 (in this case, c¢(xy) = f(yx)).
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Figure: First residue network G,.

If Gf has an s, t-path P and p = min{c¢(xy) : xy € E(P)}, then
instead of f, consider ' = f + ¢(P, p) and repeat. Note
M(f'") = M(f) + p > M(f).
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Figure: First residue network G,.

If Gf has an s, t-path P and p = min{c¢(xy) : xy € E(P)}, then
instead of f, consider ' = f + ¢(P, p) and repeat. Note

M(f") = M(f) + p > M(f).

Here we have e.g. P; = sv4 vy vst and

p1 =min{2,1,3,3,3} =1.So fh = f; + ¢(Py,1).
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Second iteration

Figure: The second flow £ and the second residue network Gy,

We have M(f,) = 4. The residue network has an s, t-path
Pg = SV3VoVq V5t and p2 = min{1,2,2,2,2} =1.

Hence f3 = fr + d)(Pg, 1)
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Third iteration
P
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Figure: The third flow f; and the third residue network G, .

We have M(f3) = 5. The residue network has an s, t-path
P3 = sv4v3v2v1v5tand p3 = min{1,1,1,1,1} =1.

Hence fy = f3 + d)(Pg, 1)
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Last iteration
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Figure: The fourth flow f and the fourth residue network Gj,.

We have M(f;) = 6. The residue network Gy, has no s, t-paths.
Hence, there is a set S, namely S = {s}, such that
se S, t¢ Sand Gy, has no edges from Sto S.
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Figure: The fourth flow f and the fourth residue network Gj,.

We have M(f;) = 6. The residue network G, has no s, t-paths.
Hence, there is a set S, namely S = {s}, such that

se S, t¢ Sand Gy, has no edges from S to S.

We check that ¢(S. S) = 6 = M(fy).
This certifies that both, #; and (S, S) are optimal.
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