
Flows in networks, IV

Lecture 28

Earlier, we proved:

Theorem 4.16. Every positive flow f in a network G can be
represented as the sum of at most |E(G)| positive flows along
cycles, along s, t-paths and along t , s-paths.

The capacity of an s, t-cut (S,S) is

c(S,S) =
∑

xy∈E :x∈S,y∈S

c(xy). (1)

Claim 4.17. For every feasible flow f in in a network
G = (V ,E , s, t , {c(e)}e∈E) and every s, t-cut (S,S) of V ,

M(f) ≤ c(S,S). (2)

Proof of Max-flow Min-cut Theorem
Theorem 4.18. For every network G = (V ,E , s, t , {c(e)}e∈E),
maximum of M(f) over all feasible flows equals to the minimum
of c(S,S) over all s, t-cuts (S,S).

We know that G has a maximum flow, say f . Construct the
residue network Gf .
If Gf has an s, t-path P and ρ = min{cf(xy) : xy ∈ E(P)}, then
the flow f ′ = f + ϕ(P, ρ) has M(f ′) = M(f) + ρ > M(f), a
contradiction.
Let S = {v ∈ V : Gf has an s, v -path}. Trivially, s ∈ S. By
above, t /∈ S. Also

Gf has no edges xy with x ∈ S and y ∈ S. (3)

By (3), (a) if xy ∈ E , x ∈ S and y ∈ S, then f (xy) = c(xy),

(b) if yx ∈ E , x ∈ S and y ∈ S, then f (yx) = 0.

Proof of Max-flow Min-cut Theorem
Theorem 4.18. For every network G = (V ,E , s, t , {c(e)}e∈E),
maximum of M(f) over all feasible flows equals to the minimum
of c(S,S) over all s, t-cuts (S,S).

We know that G has a maximum flow, say f . Construct the
residue network Gf .

If Gf has an s, t-path P and ρ = min{cf(xy) : xy ∈ E(P)}, then
the flow f ′ = f + ϕ(P, ρ) has M(f ′) = M(f) + ρ > M(f), a
contradiction.
Let S = {v ∈ V : Gf has an s, v -path}. Trivially, s ∈ S. By
above, t /∈ S. Also

Gf has no edges xy with x ∈ S and y ∈ S. (3)

By (3), (a) if xy ∈ E , x ∈ S and y ∈ S, then f (xy) = c(xy),

(b) if yx ∈ E , x ∈ S and y ∈ S, then f (yx) = 0.

Proof of Max-flow Min-cut Theorem
Theorem 4.18. For every network G = (V ,E , s, t , {c(e)}e∈E),
maximum of M(f) over all feasible flows equals to the minimum
of c(S,S) over all s, t-cuts (S,S).

We know that G has a maximum flow, say f . Construct the
residue network Gf .
If Gf has an s, t-path P and ρ = min{cf(xy) : xy ∈ E(P)}, then
the flow f ′ = f + ϕ(P, ρ) has M(f ′) = M(f) + ρ > M(f), a
contradiction.

Let S = {v ∈ V : Gf has an s, v -path}. Trivially, s ∈ S. By
above, t /∈ S. Also

Gf has no edges xy with x ∈ S and y ∈ S. (3)

By (3), (a) if xy ∈ E , x ∈ S and y ∈ S, then f (xy) = c(xy),

(b) if yx ∈ E , x ∈ S and y ∈ S, then f (yx) = 0.

Proof of Max-flow Min-cut Theorem
Theorem 4.18. For every network G = (V ,E , s, t , {c(e)}e∈E),
maximum of M(f) over all feasible flows equals to the minimum
of c(S,S) over all s, t-cuts (S,S).

We know that G has a maximum flow, say f . Construct the
residue network Gf .
If Gf has an s, t-path P and ρ = min{cf(xy) : xy ∈ E(P)}, then
the flow f ′ = f + ϕ(P, ρ) has M(f ′) = M(f) + ρ > M(f), a
contradiction.
Let S = {v ∈ V : Gf has an s, v -path}. Trivially, s ∈ S. By
above, t /∈ S. Also

Gf has no edges xy with x ∈ S and y ∈ S. (3)

By (3), (a) if xy ∈ E , x ∈ S and y ∈ S, then f (xy) = c(xy),

(b) if yx ∈ E , x ∈ S and y ∈ S, then f (yx) = 0.

Recall: (a) if xy ∈ E , x ∈ S and y ∈ S, then f (xy) = c(xy),

(b) if yx ∈ E , x ∈ S and y ∈ S, then f (yx) = 0.

Hence repeating the calculations in the proof of Claim 4.17 and
using (a) and (b) in the third line below,

M(f) =
∑
v∈S

divf (v) =
∑
v∈S

 ∑
e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e)

=
∑

xy∈E :x∈S,y∈S

f (xy)−
∑

yx∈E :x∈S,y∈S

f (yx)

∑
xy∈E :x∈S,y∈S

c(xy)−
∑

yx∈E :x∈S,y∈S

0 = c(S,S).

This proves Max-flow Min-cut Theorem.

Recall: (a) if xy ∈ E , x ∈ S and y ∈ S, then f (xy) = c(xy),

(b) if yx ∈ E , x ∈ S and y ∈ S, then f (yx) = 0.

Hence repeating the calculations in the proof of Claim 4.17 and
using (a) and (b) in the third line below,

M(f) =
∑
v∈S

divf (v) =
∑
v∈S

 ∑
e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e)

=
∑

xy∈E :x∈S,y∈S

f (xy)−
∑

yx∈E :x∈S,y∈S

f (yx)

∑
xy∈E :x∈S,y∈S

c(xy)−
∑

yx∈E :x∈S,y∈S

0 = c(S,S).

This proves Max-flow Min-cut Theorem.

Recall: (a) if xy ∈ E , x ∈ S and y ∈ S, then f (xy) = c(xy),

(b) if yx ∈ E , x ∈ S and y ∈ S, then f (yx) = 0.

Hence repeating the calculations in the proof of Claim 4.17 and
using (a) and (b) in the third line below,

M(f) =
∑
v∈S

divf (v) =
∑
v∈S

 ∑
e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e)

=
∑

xy∈E :x∈S,y∈S

f (xy)−
∑

yx∈E :x∈S,y∈S

f (yx)

∑
xy∈E :x∈S,y∈S

c(xy)−
∑

yx∈E :x∈S,y∈S

0 = c(S,S).

This proves Max-flow Min-cut Theorem.

Recall: (a) if xy ∈ E , x ∈ S and y ∈ S, then f (xy) = c(xy),

(b) if yx ∈ E , x ∈ S and y ∈ S, then f (yx) = 0.

Hence repeating the calculations in the proof of Claim 4.17 and
using (a) and (b) in the third line below,

M(f) =
∑
v∈S

divf (v) =
∑
v∈S

 ∑
e∈E+(v)

f (e)−
∑

e∈E−(v)

f (e)

=
∑

xy∈E :x∈S,y∈S

f (xy)−
∑

yx∈E :x∈S,y∈S

f (yx)

∑
xy∈E :x∈S,y∈S

c(xy)−
∑

yx∈E :x∈S,y∈S

0 = c(S,S).

This proves Max-flow Min-cut Theorem.

For each network G, let M(G) denote the maximum value of a
feasible flow in G.

Consider the following simple example

Here on the left is the original network, on the right is the
residue network.

Consider the s, t-path s, x , y , t in Gf . The minimum capacity of
its edges is 1. Take an iteration of FF-algorithm.

For each network G, let M(G) denote the maximum value of a
feasible flow in G.

Consider the following simple example

Here on the left is the original network, on the right is the
residue network.

Consider the s, t-path s, x , y , t in Gf . The minimum capacity of
its edges is 1. Take an iteration of FF-algorithm.

We now have

We have the s, t-path s, y , x , t in Gf . Again, the minimum
capacity of its edges is 1.

We now have

We have the s, t-path s, y , x , t in Gf . Again, the minimum
capacity of its edges is 1.

This time we have

Again, we have the s, t-path s, x , y , t in Gf .

This time we have

Again, we have the s, t-path s, x , y , t in Gf .

Altogether, we will do 2000 steps in this tiny network.
Moreover, there is an example of a network with 10 vertices
and irrational capacities, where if we choose the augmenting
paths not wisely then we will need infinite number of iterations,
and moreover, the value of the flow will not tend to the
maximum flow, but only to one fourth of it.

But there is a good news: Edmonds and Karp proved that if we
use the Breadth-First Search for finding augmenting paths in
Gf , then independently of capacities we find a maximum flow
after at most n3 iterations.

Observation: If all capacities are integers, then the
FF-algorithm yields an integer-valued flow.

Altogether, we will do 2000 steps in this tiny network.
Moreover, there is an example of a network with 10 vertices
and irrational capacities, where if we choose the augmenting
paths not wisely then we will need infinite number of iterations,
and moreover, the value of the flow will not tend to the
maximum flow, but only to one fourth of it.

But there is a good news: Edmonds and Karp proved that if we
use the Breadth-First Search for finding augmenting paths in
Gf , then independently of capacities we find a maximum flow
after at most n3 iterations.

Observation: If all capacities are integers, then the
FF-algorithm yields an integer-valued flow.

Altogether, we will do 2000 steps in this tiny network.
Moreover, there is an example of a network with 10 vertices
and irrational capacities, where if we choose the augmenting
paths not wisely then we will need infinite number of iterations,
and moreover, the value of the flow will not tend to the
maximum flow, but only to one fourth of it.

But there is a good news: Edmonds and Karp proved that if we
use the Breadth-First Search for finding augmenting paths in
Gf , then independently of capacities we find a maximum flow
after at most n3 iterations.

Observation: If all capacities are integers, then the
FF-algorithm yields an integer-valued flow.

Proof of Theorem 4.13
It says: κ′G(x , y) = λ′

G(x , y) ∀x , y ∈ V (G) ∀ digraph G.

Proof. Construct network H with V (H) = V (G), E(H) = E(G),
s = x , t = y and c(e) = 1 for each e ∈ E(H). Let (S0,S0) be an
x , y -cut of minimum capacity. By Max-flow Min-cut Theorem,

M(H) = c(S0,S0). (4)

Since c(e) = 1 for each e ∈ E(H), minc(S,S) = κ′G(x , y).
Let f0 be a flow in H with M(f0) = M(H). By Theorem 4.16,
f0 =

∑k
i=1 ϕ(Pi , ρi), where each ρi is a positive integer. Hence

ρ1 = . . . = ρk = 1. This implies that all Pi are edge-disjoint,
and M(f0) = k .

Thus M(f0) ≤ λ′
G(x , y). And since λ′

G(x , y) ≥ M(H), we get
from (4) that

λ′
G(x , y) ≥ M(H) = c(S0,S0) ≥ κ′G(x , y) ≥ λ′

G(x , y).

Proof of Theorem 4.13
It says: κ′G(x , y) = λ′

G(x , y) ∀x , y ∈ V (G) ∀ digraph G.

Proof. Construct network H with V (H) = V (G), E(H) = E(G),
s = x , t = y and c(e) = 1 for each e ∈ E(H). Let (S0,S0) be an
x , y -cut of minimum capacity. By Max-flow Min-cut Theorem,

M(H) = c(S0,S0). (4)

Since c(e) = 1 for each e ∈ E(H), minc(S,S) = κ′G(x , y).
Let f0 be a flow in H with M(f0) = M(H). By Theorem 4.16,
f0 =

∑k
i=1 ϕ(Pi , ρi), where each ρi is a positive integer. Hence

ρ1 = . . . = ρk = 1. This implies that all Pi are edge-disjoint,
and M(f0) = k .

Thus M(f0) ≤ λ′
G(x , y). And since λ′

G(x , y) ≥ M(H), we get
from (4) that

λ′
G(x , y) ≥ M(H) = c(S0,S0) ≥ κ′G(x , y) ≥ λ′

G(x , y).

Proof of Theorem 4.13
It says: κ′G(x , y) = λ′

G(x , y) ∀x , y ∈ V (G) ∀ digraph G.

Proof. Construct network H with V (H) = V (G), E(H) = E(G),
s = x , t = y and c(e) = 1 for each e ∈ E(H). Let (S0,S0) be an
x , y -cut of minimum capacity. By Max-flow Min-cut Theorem,

M(H) = c(S0,S0). (4)

Since c(e) = 1 for each e ∈ E(H), minc(S,S) = κ′G(x , y).
Let f0 be a flow in H with M(f0) = M(H). By Theorem 4.16,
f0 =

∑k
i=1 ϕ(Pi , ρi), where each ρi is a positive integer. Hence

ρ1 = . . . = ρk = 1. This implies that all Pi are edge-disjoint,
and M(f0) = k .

Thus M(f0) ≤ λ′
G(x , y). And since λ′

G(x , y) ≥ M(H), we get
from (4) that

λ′
G(x , y) ≥ M(H) = c(S0,S0) ≥ κ′G(x , y) ≥ λ′

G(x , y).

Proof of Theorem 4.13
It says: κ′G(x , y) = λ′

G(x , y) ∀x , y ∈ V (G) ∀ digraph G.

Proof. Construct network H with V (H) = V (G), E(H) = E(G),
s = x , t = y and c(e) = 1 for each e ∈ E(H). Let (S0,S0) be an
x , y -cut of minimum capacity. By Max-flow Min-cut Theorem,

M(H) = c(S0,S0). (4)

Since c(e) = 1 for each e ∈ E(H), minc(S,S) = κ′G(x , y).
Let f0 be a flow in H with M(f0) = M(H). By Theorem 4.16,
f0 =

∑k
i=1 ϕ(Pi , ρi), where each ρi is a positive integer. Hence

ρ1 = . . . = ρk = 1. This implies that all Pi are edge-disjoint,
and M(f0) = k .

Thus M(f0) ≤ λ′
G(x , y). And since λ′

G(x , y) ≥ M(H), we get
from (4) that

λ′
G(x , y) ≥ M(H) = c(S0,S0) ≥ κ′G(x , y) ≥ λ′

G(x , y).

Proof of Theorem 4.12
It says: κG(x , y) = λG(x , y) ∀x , y ∈ V (G) with xy /∈ E(G) ∀
digraph G.

Proof. Let G a digraph. Construct another digraph G′ as
follows.

Replace each vertex u by two vertices u′ and u′′ with an edge
u′u′′, and replace each edge vw with edge v ′′w ′.

Proof of Theorem 4.12
It says: κG(x , y) = λG(x , y) ∀x , y ∈ V (G) with xy /∈ E(G) ∀
digraph G.

Proof. Let G a digraph. Construct another digraph G′ as
follows.

Replace each vertex u by two vertices u′ and u′′ with an edge
u′u′′, and replace each edge vw with edge v ′′w ′.

By Theorem 4.13, κ′G′(x ′′, y ′) = λ′
G′(x ′′, y ′). (∗)

Let S be a minimum x , y -cut in G. If we delete in G′ edge w ′w ′′

for every w ∈ S, then the resulting subgraph of G′ has no
x ′′, y ′-path. Hence

κG(x , y) ≥ κ′G′(x ′′, y ′). (5)

On the other hand, let L be a minimum x ′′, y ′-edge-cut in G′. If
L contains an edge of the form v ′′w ′ and w ′ ̸= y ′, then we can
replace it in L by edge w ′w ′′. Similarly, if v ′′ ̸= x ′′, then we can
replace v ′′w ′ in L by edge v ′v ′′. Since x ′′y ′ /∈ E(G′), we can
find a minimum x ′′, y ′-edge-cut L in G′ in which each edge has
the form u′u′′. But then the set {u ∈ V (G) : u′u′′ ∈ L} is an
x , y -cut in G. So, κG(x , y) ≤ κ′G′(x ′′, y ′), and together with (5),

κG(x , y) = κ′G′(x ′′, y ′). (6)

By Theorem 4.13, κ′G′(x ′′, y ′) = λ′
G′(x ′′, y ′). (∗)

Let S be a minimum x , y -cut in G. If we delete in G′ edge w ′w ′′

for every w ∈ S, then the resulting subgraph of G′ has no
x ′′, y ′-path. Hence

κG(x , y) ≥ κ′G′(x ′′, y ′). (5)

On the other hand, let L be a minimum x ′′, y ′-edge-cut in G′. If
L contains an edge of the form v ′′w ′ and w ′ ̸= y ′, then we can
replace it in L by edge w ′w ′′. Similarly, if v ′′ ̸= x ′′, then we can
replace v ′′w ′ in L by edge v ′v ′′. Since x ′′y ′ /∈ E(G′), we can
find a minimum x ′′, y ′-edge-cut L in G′ in which each edge has
the form u′u′′. But then the set {u ∈ V (G) : u′u′′ ∈ L} is an
x , y -cut in G. So, κG(x , y) ≤ κ′G′(x ′′, y ′), and together with (5),

κG(x , y) = κ′G′(x ′′, y ′). (6)

By Theorem 4.13, κ′G′(x ′′, y ′) = λ′
G′(x ′′, y ′). (∗)

Let S be a minimum x , y -cut in G. If we delete in G′ edge w ′w ′′

for every w ∈ S, then the resulting subgraph of G′ has no
x ′′, y ′-path. Hence

κG(x , y) ≥ κ′G′(x ′′, y ′). (5)

On the other hand, let L be a minimum x ′′, y ′-edge-cut in G′. If
L contains an edge of the form v ′′w ′ and w ′ ̸= y ′, then we can
replace it in L by edge w ′w ′′. Similarly, if v ′′ ̸= x ′′, then we can
replace v ′′w ′ in L by edge v ′v ′′. Since x ′′y ′ /∈ E(G′), we can
find a minimum x ′′, y ′-edge-cut L in G′ in which each edge has
the form u′u′′. But then the set {u ∈ V (G) : u′u′′ ∈ L} is an
x , y -cut in G. So, κG(x , y) ≤ κ′G′(x ′′, y ′), and together with (5),

κG(x , y) = κ′G′(x ′′, y ′). (6)

Any two int.-disjoint x , y -paths in G yield edge-disjoint
x ′′, y ′-paths in G′ (with added edges of the kind u′u′′). Hence
λG(x , y) ≤ λ′

G′(x ′′, y ′).

Any two edge-disjoint x ′′, y ′-paths in G′ are also vertex
int.-disjoint, and hence correspond to int.-disjoint x , y -paths in
G. Hence λG(x , y) ≥ λ′

G′(x ′′, y ′), which together with the
previous para yields

λG(x , y) = λ′
G′(x ′′, y ′). (7)

Now (∗), (6), and (7) together imply the theorem.

Remark: Since we can find maximum flows in n-vertex
networks in O(n3) iterations, the last proofs yield polynomial
algorithms for finding connectivity, edge connectivity and
minimum separating sets in directed graphs.

Any two int.-disjoint x , y -paths in G yield edge-disjoint
x ′′, y ′-paths in G′ (with added edges of the kind u′u′′). Hence
λG(x , y) ≤ λ′

G′(x ′′, y ′).

Any two edge-disjoint x ′′, y ′-paths in G′ are also vertex
int.-disjoint, and hence correspond to int.-disjoint x , y -paths in
G. Hence λG(x , y) ≥ λ′

G′(x ′′, y ′), which together with the
previous para yields

λG(x , y) = λ′
G′(x ′′, y ′). (7)

Now (∗), (6), and (7) together imply the theorem.

Remark: Since we can find maximum flows in n-vertex
networks in O(n3) iterations, the last proofs yield polynomial
algorithms for finding connectivity, edge connectivity and
minimum separating sets in directed graphs.

Any two int.-disjoint x , y -paths in G yield edge-disjoint
x ′′, y ′-paths in G′ (with added edges of the kind u′u′′). Hence
λG(x , y) ≤ λ′

G′(x ′′, y ′).

Any two edge-disjoint x ′′, y ′-paths in G′ are also vertex
int.-disjoint, and hence correspond to int.-disjoint x , y -paths in
G. Hence λG(x , y) ≥ λ′

G′(x ′′, y ′), which together with the
previous para yields

λG(x , y) = λ′
G′(x ′′, y ′). (7)

Now (∗), (6), and (7) together imply the theorem.

Remark: Since we can find maximum flows in n-vertex
networks in O(n3) iterations, the last proofs yield polynomial
algorithms for finding connectivity, edge connectivity and
minimum separating sets in directed graphs.

Any two int.-disjoint x , y -paths in G yield edge-disjoint
x ′′, y ′-paths in G′ (with added edges of the kind u′u′′). Hence
λG(x , y) ≤ λ′

G′(x ′′, y ′).

Any two edge-disjoint x ′′, y ′-paths in G′ are also vertex
int.-disjoint, and hence correspond to int.-disjoint x , y -paths in
G. Hence λG(x , y) ≥ λ′

G′(x ′′, y ′), which together with the
previous para yields

λG(x , y) = λ′
G′(x ′′, y ′). (7)

Now (∗), (6), and (7) together imply the theorem.

Remark: Since we can find maximum flows in n-vertex
networks in O(n3) iterations, the last proofs yield polynomial
algorithms for finding connectivity, edge connectivity and
minimum separating sets in directed graphs.

