Flows: algorightms and applications

Lecture 29



Theorem 4.13: ki5(x,y) = Ng(x, y) Vx, ¥y € V(G) V digraph G.

Theorem 4.12: kg(x,y) = Ag(x,y) VX, y € V(G) with
xy ¢ E(G) V digraph G.

Proof. Let G a digraph. Construct another digraph G’ as

follows
G ]
x y X" /Y
\< / »
v/ z v z
Replace each vertex u by two vertices v/ and u” with an edge
u'u”, and replace each edge vw with edge v/ w'.




By Theorem 4.13,

kg (X" y) = XNg (X", y').
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By Theorem 4.13,  wig (X", y") = Ng (X", y'). (%)

Let S be a minimum x, y-cut in G. If we delete in G’ edge w/w”
for every w € S, then the resulting subgraph of G’ has no
x" y'-path. Hence

ka(X, y) > kg (X", y). (1)
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Let S be a minimum x, y-cut in G. If we delete in G’ edge w/w”
for every w € S, then the resulting subgraph of G’ has no
x" y'-path. Hence

ka(X, y) > kg (X", y). (1)

On the other hand, let L be a minimum x”| y’-edge-cut in G'. If
L contains an edge of the form v’w’ and w’ # y’, then we can
replace it in L by edge w'w”. Similarly, if v"/ # x”, then we can
replace v’w’ in L by edge v'v”. Since x"y’ ¢ E(G'), we can
find a minimum x”, y’-edge-cut L in G’ in which each edge has
the form v'v”. But then the set {u € V(G) : U'v" € L} is an
x,y-cutin G. 8o, rg(x,y) < kg (x",y’'), and together with (1),

ka(X,y) = ke (X" y"). (2)



Any two int.-disjoint x, y-paths in G yield edge-disjoint
x", y'-paths in G’ (with added edges of the kind v'u”). Hence
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Any two edge-disjoint x”, y’-paths in G’ are also vertex
int.-disjoint, and hence correspond to int.-disjoint x, y-paths in

G. Hence A\g(x,y) > Ng (X", y'), which together with the
previous para yields

)\G(X,}/) - )‘/Cv‘/(xﬁvy/)' (3)
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Any two int.-disjoint x, y-paths in G yield edge-disjoint
x" y'-paths in G’ (with added edges of the kind v'u”). Hence
)‘G(Xv y) < )‘/G’(X/lv y/)

Any two edge-disjoint x”, y’-paths in G’ are also vertex
int.-disjoint, and hence correspond to int.-disjoint x, y-paths in
G. Hence A\g(x,y) > Ng (X", y'), which together with the
previous para yields

)\G(X,}/) - )‘/Cv‘/(xﬁvy/)' (3)

Now (%), (2), and (3) together imply the theorem.

Remark: Since we can find maximum flows in n-vertex
networks in O(n®) iterations, the last proofs yield polynomial
algorithms for finding connectivity, edge connectivity and
minimum separating sets in directed graphs.



Matchings in bipartite graphs: using flows

Let G be a bipartite graph with parts X and Y. Construct an
auxiliary network H = (V, E, s, t,{c(e)}ece) as follows.

We take V = V(G) U {s, t}, orient each edge of G from X to Y
and make the capacity of each such edge equal n = | X| + | Y],

add the set of edges {sx : x € X} U {yt: y € Y}, each of
capacity 1.



Theorem 4.19: For each bipartite graph G, o/ (G) = M(H).
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Proof. Let L = {x;y; : 1 <i < k} be a matching in G with
IL| = k = d/(G). Fori=1,...,k, let P; denote the path
S, X;, yi, t in H. Then the value of the flow

Z; ¢(Pi, 1)
is k = o/(G). This proves o/(G) < M(H).
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Now consider a flow f in H with M(f) = M(H) obtained using
FF-algorithm. By Theorem 4.16, f = S5 . ¢(P;, p;), where each
pi is a positive integer. Since each of these paths contains two
edges of capacity 1, p1 = ... = px = 1.



Theorem 4.19: For each bipartite graph G, o/(G) = M(H).

Proof. Let L = {x;y; : 1 <i < k} be a matching in G with
IL| = k = d/(G). Fori=1,...,k, let P; denote the path
S, X;, yi, t in H. Then the value of the flow

S a(P)
is k = o/(G). This proves o/(G) < M(H).

Now consider a flow f in H with M(f) = M(H) obtained using
FF-algorithm. By Theorem 4.16, f = S5 . ¢(P;, p;), where each
pi is a positive integer. Since each of these paths contains two
edges of capacity 1, p1 = ... = px = 1.

Moreover, since each x € X has only one in-neighbor, and
each y € Y has only one out-neighbor, each of the paths P;
has the form s, x;, y;, t and all edges x;y; are disjoint. This
proves o'(G) > M(H) and hence the theorem.



Main results in Chapter 4

1. Characterization theorem for 2-connected graphs. (Theorem
4.6) (Theorem 4.2.4 in the book).

2. Max-flow Min-cut Theorem (Theorem 4.18).



Main results in Chapter 4

1. Characterization theorem for 2-connected graphs. (Theorem
4.6) (Theorem 4.2.4 in the book).

2. Max-flow Min-cut Theorem (Theorem 4.18).
3. Menger Theorems (Theorems 4.8, 4.10, 4.11, 4.12 and 4.13)



A polygonal curve is a curve composed of finitely many line
segments.

A drawing of a graph G is a function ¢ : V(G) U E(G) — R? s.t.
(@) p(v) € R? for every v € V(G);

(b) p(v) # p(V)if v,V € V(G)and v # V/;

(c) ¢(xy) is a polygonal curve connecting o(x) with o(y).

A crossing in a drawing of a ‘graph is a common point in the
images of two edges that is not the image of their common end.
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A plane graph is a pair (G, ¢) where ¢ is a drawing of G without
crossings.

Two distinct plane graphs.
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Remind me about Gas-Water-Electricity Problem.
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Definition of dual graphs: given in class (and book).



