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Theorem 4.13: κ′G(x , y) = λ′
G(x , y) ∀x , y ∈ V (G) ∀ digraph G.

Theorem 4.12: κG(x , y) = λG(x , y) ∀x , y ∈ V (G) with
xy /∈ E(G) ∀ digraph G.

Proof. Let G a digraph. Construct another digraph G′ as
follows.

Replace each vertex u by two vertices u′ and u′′ with an edge
u′u′′, and replace each edge vw with edge v ′′w ′.



By Theorem 4.13, κ′G′(x ′′, y ′) = λ′
G′(x ′′, y ′). (∗)

Let S be a minimum x , y -cut in G. If we delete in G′ edge w ′w ′′

for every w ∈ S, then the resulting subgraph of G′ has no
x ′′, y ′-path. Hence

κG(x , y) ≥ κ′G′(x ′′, y ′). (1)

On the other hand, let L be a minimum x ′′, y ′-edge-cut in G′. If
L contains an edge of the form v ′′w ′ and w ′ ̸= y ′, then we can
replace it in L by edge w ′w ′′. Similarly, if v ′′ ̸= x ′′, then we can
replace v ′′w ′ in L by edge v ′v ′′. Since x ′′y ′ /∈ E(G′), we can
find a minimum x ′′, y ′-edge-cut L in G′ in which each edge has
the form u′u′′. But then the set {u ∈ V (G) : u′u′′ ∈ L} is an
x , y -cut in G. So, κG(x , y) ≤ κ′G′(x ′′, y ′), and together with (1),

κG(x , y) = κ′G′(x ′′, y ′). (2)
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Any two int.-disjoint x , y -paths in G yield edge-disjoint
x ′′, y ′-paths in G′ (with added edges of the kind u′u′′). Hence
λG(x , y) ≤ λ′

G′(x ′′, y ′).

Any two edge-disjoint x ′′, y ′-paths in G′ are also vertex
int.-disjoint, and hence correspond to int.-disjoint x , y -paths in
G. Hence λG(x , y) ≥ λ′

G′(x ′′, y ′), which together with the
previous para yields

λG(x , y) = λ′
G′(x ′′, y ′). (3)

Now (∗), (2), and (3) together imply the theorem.

Remark: Since we can find maximum flows in n-vertex
networks in O(n3) iterations, the last proofs yield polynomial
algorithms for finding connectivity, edge connectivity and
minimum separating sets in directed graphs.
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Matchings in bipartite graphs: using flows
Let G be a bipartite graph with parts X and Y . Construct an
auxiliary network H = (V ,E , s, t , {c(e)}e∈E) as follows.

We take V = V (G) ∪ {s, t}, orient each edge of G from X to Y
and make the capacity of each such edge equal n = |X |+ |Y |,
add the set of edges {sx : x ∈ X} ∪ {yt : y ∈ Y}, each of
capacity 1.



Theorem 4.19: For each bipartite graph G, α′(G) = M(H).

Proof. Let L = {xiyi : 1 ≤ i ≤ k} be a matching in G with
|L| = k = α′(G). For i = 1, . . . , k , let Pi denote the path
s, xi , yi , t in H. Then the value of the flow∑k

i=1
ϕ(Pi ,1)

is k = α′(G). This proves α′(G) ≤ M(H).

Now consider a flow f in H with M(f ) = M(H) obtained using
FF-algorithm. By Theorem 4.16, f =

∑k
i=1 ϕ(Pi , ρi), where each

ρi is a positive integer. Since each of these paths contains two
edges of capacity 1, ρ1 = . . . = ρk = 1.

Moreover, since each x ∈ X has only one in-neighbor, and
each y ∈ Y has only one out-neighbor, each of the paths Pi
has the form s, xi , yi , t and all edges xiyi are disjoint. This
proves α′(G) ≥ M(H) and hence the theorem.
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Main results in Chapter 4
1. Characterization theorem for 2-connected graphs. (Theorem
4.6) (Theorem 4.2.4 in the book).

2. Max-flow Min-cut Theorem (Theorem 4.18).

3. Menger Theorems (Theorems 4.8, 4.10, 4.11, 4.12 and 4.13)
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A polygonal curve is a curve composed of finitely many line
segments.

A drawing of a graph G is a function φ : V (G) ∪ E(G) → R2 s.t.
(a) φ(v) ∈ R2 for every v ∈ V (G);
(b) φ(v) ̸= φ(v ′) if v , v ′ ∈ V (G) and v ̸= v ′;
(c) φ(xy) is a polygonal curve connecting φ(x) with φ(y).

A crossing in a drawing of a graph is a common point in the
images of two edges that is not the image of their common end.



A graph G is planar if it has a drawing φ without crossings.

A plane graph is a pair (G, φ) where φ is a drawing of G without
crossings.

Remind me about Gas-Water-Electricity Problem.
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A face of a plane graph (G, φ) is a connected component of
R2 − φ(V (G) ∪ E(G)).

The length, ℓ(Fi), of a face Fi in a plane graph (G, φ) is the total
length of the closed walk(s) bounding Fi .

Definition of dual graphs: given in class (and book).
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