Connections, bipartite graphs

Lecture 3

Walks

A walk in a graph *G* is a list $v_0, e_1, v_1, e_2, v_2, \ldots, e_\ell, v_\ell$ of vertices v_i and edges e_i such that for each $1 \le i \le \ell$, the endpoints of e_i are v_{i-1} and v_i .

If the first vertex of a walk is u and the last vertex on the walk is v, we call this a u, v-walk. When G is a simple graph, we also may specify a walk by simply listing the vertices, since it is unambiguous which edge is traversed in each step.

(ロ) (同) (三) (三) (三) (○) (○)

Walks

A walk in a graph *G* is a list $v_0, e_1, v_1, e_2, v_2, \ldots, e_\ell, v_\ell$ of vertices v_i and edges e_i such that for each $1 \le i \le \ell$, the endpoints of e_i are v_{i-1} and v_i .

If the first vertex of a walk is u and the last vertex on the walk is v, we call this a u, v-walk. When G is a simple graph, we also may specify a walk by simply listing the vertices, since it is unambiguous which edge is traversed in each step.

A *u*, *v*-trail is a *u*, *v*-walk with no repeated edges (but vertices may repeat). If $u \neq v$, a *u*, *v*-path is a *u*, *v*-walk with no repeated vertices.

(You should convince yourself that the subgraph definition of path matches up with the walk definition of a path).

If u = v, then we call a u, v-walk or trail **closed**. The **length** of a walk, trail or path is the number of edges traversed.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(日)

Lemma 1.1 (Lemma 1.2.5 in the book) : Every u, v-walk contains a u, v-path.

Lemma 1.1 (Lemma 1.2.5 in the book) : Every u, v-walk contains a u, v-path.

Proof. We will proceed by induction on the length ℓ of the u, v-walk W.

If $\ell = 0$, then *W* has no edges, so u = v and there are no repeated vertices or edges. Thus *W* is a *u*, *v*-path.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lemma 1.1 (Lemma 1.2.5 in the book) : Every u, v-walk contains a u, v-path.

Proof. We will proceed by induction on the length ℓ of the u, v-walk W.

If $\ell = 0$, then *W* has no edges, so u = v and there are no repeated vertices or edges. Thus *W* is a *u*, *v*-path.

Now assume $\ell > 0$ and all u, v-walks of length $\ell' < \ell$ contain a u, v-path. Let W be any u, v-walk of length ℓ . If W does not repeat any vertices, then W also cannot repeat any edges, so W is a path by itself. Thus, we may assume there is some vertex w that appears at least twice in our walk.

Then W has the form

$$(u = v_0, v_1, v_2, \dots, v_{k_1} = \mathbf{w}, v_{k_1+1}, \dots, v_{k_2} = \mathbf{w}, v_{k_2+1}, \dots, v_{\ell+1} = v)$$

for some choice of $k_1, k_2 \in \mathbb{N}$, $k_1 < k_2$.

(Note 1: $v = v_{\ell+1}$ because a walk of LENGTH ℓ contains $\ell + 1$ vertices.

Note 2: we are not assuming that *G* is simple, but we are suppressing the information about which edges are traversed because it will not affect the proof).

(ロ) (同) (三) (三) (三) (○) (○)

Then W has the form

$$(u = v_0, v_1, v_2, \dots, v_{k_1} = \mathbf{w}, v_{k_1+1}, \dots, v_{k_2} = \mathbf{w}, v_{k_2+1}, \dots, v_{\ell+1} = v)$$

for some choice of $k_1, k_2 \in \mathbb{N}$, $k_1 < k_2$.

(Note 1: $v = v_{\ell+1}$ because a walk of LENGTH ℓ contains $\ell + 1$ vertices.

Note 2: we are not assuming that *G* is simple, but we are suppressing the information about which edges are traversed because it will not affect the proof).

However, this implies that

$$W' = (u = v_0, v_1, v_2, \dots, v_{k_1} = v_{k_2} = w, v_{k_2+1}, \dots, v_{\ell+1} = v)$$

is a subwalk of *W* of length $\ell' = \ell - (k_2 - k_1) < \ell$. So by our inductive hypothesis *W'* contains a *u*, *v*-path, and thus so does *W*. Thus, via induction, we have proved that every *u*, *v*-walk contains a *u*, *v*-path.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Observe that the relation F(u, v) that *G* has a *u*, *v*-path is reflexive, symmetric and transitive. Hence *F* is an equivalence relation, and so partitions V(G) into equivalence classes. These classes are called connected components of *G*.

(ロ) (同) (三) (三) (三) (○) (○)

Observe that the relation F(u, v) that *G* has a u, v-path is reflexive, symmetric and transitive. Hence *F* is an equivalence relation, and so partitions V(G) into equivalence classes. These classes are called connected components of *G*.

Example: Which of the following cycles are bipartite?

 $C_4, C_5, C_6, C_7?$

(ロ) (同) (三) (三) (三) (○) (○)

Observe that the relation F(u, v) that *G* has a u, v-path is reflexive, symmetric and transitive. Hence *F* is an equivalence relation, and so partitions V(G) into equivalence classes. These classes are called connected components of *G*.

Example: Which of the following cycles are bipartite?

 $C_4, C_5, C_6, C_7?$

Lemma 1.2 (Lemma 1.2.15 in the book) : Every closed walk of odd length contains an odd cycle.

Proof. In Lecture 4.

Observation: (1) If $\delta(G) \ge 2$, then *G* has a cycle; (2) If *G* is 2-regular, then each component of *G* is a cycle.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Observation: (1) If $\delta(G) \ge 2$, then *G* has a cycle; (2) If *G* is 2-regular, then each component of *G* is a cycle.

Proof. If *G* has a loop, this loop is already a cycle. Suppose, *G* is loopless. Consider a longest path, say $P = v_0, e_1, v_1, \ldots, e_k, v_k$ in *G*. Since $\delta(G) \ge 2$, there is an edge $e_0 \ne e_1$ incident to v_0 . Let *w* be the other end of e_0 .

By the maximality of P, $w \in \{v_1, \ldots, v_k\}$. If $w = v_i$, then we have cycle $v_0, e_1, v_1, \ldots, e_i, v_i, e_0, v_0$. This proves (1).

Let *G* be 2-regular and connected. Repeat the proof of (1): If *G* has a loop then since $\Delta(G) = 2$, *G* is a loop. So, suppose, *G* is loopless. Consider a longest path, say $P = v_0, e_1, v_1, \ldots, e_k, v_k$ in *G*. Since $\delta(G) = 2$, there is an edge $e_0 \neq e_1$ incident to v_0 . Let *w* be the other end of e_0 . Since $\Delta(G) = 2$, vertex *w* can be only v_k .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof. The forward direction is logically equivalent to "If G contains an odd cycle, then G is not bipartite", which we have proved.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Proof. The forward direction is logically equivalent to "If G contains an odd cycle, then G is not bipartite", which we have proved.

We focus on the backwards direction. Observe that it is enough to prove the theorem for connected graphs. So, assume a connected *G* has no odd cycles. Fix a vertex $v \in V(G)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof. The forward direction is logically equivalent to "If G contains an odd cycle, then G is not bipartite", which we have proved.

We focus on the backwards direction. Observe that it is enough to prove the theorem for connected graphs. So, assume a connected *G* has no odd cycles. Fix a vertex $v \in V(G)$.

Construct sets $V_1, V_2, ...$ as follows. Let $V_1 = \{v\}$. For i = 1, 2, ..., if $\bigcup_{j=1}^i V_j = V(G)$, then Stop, otherwise, let $V_{i+1} = N(V_i) - \bigcup_{j=1}^i V_j$.

Proof. The forward direction is logically equivalent to "If G contains an odd cycle, then G is not bipartite", which we have proved.

We focus on the backwards direction. Observe that it is enough to prove the theorem for connected graphs. So, assume a connected *G* has no odd cycles. Fix a vertex $v \in V(G)$.

Construct sets $V_1, V_2, ...$ as follows. Let $V_1 = \{v\}$. For i = 1, 2, ..., if $\bigcup_{j=1}^i V_j = V(G)$, then Stop, otherwise, let $V_{i+1} = N(V_i) - \bigcup_{j=1}^i V_j$.

We claim that every V_i is independent.

The claim is trivial for i = 1. Suppose i > 1, $x, y \in V_i$ and $xy \in E(G)$. By the definition of V_i , G contains a path P_x from v to x and a path P_y from v to y, each with i - 1 edges. Then the walk obtained from P_x by adding edge xy and then the reverse of P_y is a closed walk if odd length. By Lemma 1.2, it contains and odd cycle, a contradiction. This proves the claim.

(ロ) (同) (三) (三) (三) (三) (○) (○)

The claim is trivial for i = 1. Suppose i > 1, $x, y \in V_i$ and $xy \in E(G)$. By the definition of V_i , G contains a path P_x from v to x and a path P_y from v to y, each with i - 1 edges. Then the walk obtained from P_x by adding edge xy and then the reverse of P_y is a closed walk if odd length. By Lemma 1.2, it contains and odd cycle, a contradiction. This proves the claim.

Then the sets $S_1 = V_1 \cup V_3 \cup V_5 \cup \ldots$ and $S_2 = V_2 \cup V_4 \cup V_6 \cup \ldots$ are independent, and thus *G* is bipartite.

Theorem 1.4 (Proposition 1.3.3) **Degree Sum Formula**: For every graph *G*,

 $\sum_{v\in V(G)} d(v) = 2|E(G)|.$

The claim is trivial for i = 1. Suppose i > 1, $x, y \in V_i$ and $xy \in E(G)$. By the definition of V_i , G contains a path P_x from v to x and a path P_y from v to y, each with i - 1 edges. Then the walk obtained from P_x by adding edge xy and then the reverse of P_y is a closed walk if odd length. By Lemma 1.2, it contains and odd cycle, a contradiction. This proves the claim.

Then the sets $S_1 = V_1 \cup V_3 \cup V_5 \cup \ldots$ and $S_2 = V_2 \cup V_4 \cup V_6 \cup \ldots$ are independent, and thus *G* is bipartite.

Theorem 1.4 (Proposition 1.3.3) **Degree Sum Formula**: For every graph *G*,

$$\sum_{v\in V(G)} d(v) = 2|E(G)|.$$

Proof. Each edge has exactly two endpoints, and so contributes to the sum of degrees exactly twice.