
Connections, bipartite graphs

Lecture 3



Walks

A walk in a graph G is a list v0,e1, v1,e2, v2, . . . ,eℓ, vℓ of
vertices vi and edges ei such that for each 1 ≤ i ≤ ℓ, the
endpoints of ei are vi−1 and vi .

If the first vertex of a walk is u and the last vertex on the walk is
v , we call this a u, v -walk. When G is a simple graph, we also
may specify a walk by simply listing the vertices, since it is
unambiguous which edge is traversed in each step.

A u, v -trail is a u, v -walk with no repeated edges (but vertices
may repeat). If u ̸= v , a u, v -path is a u, v -walk with no
repeated vertices.
(You should convince yourself that the subgraph definition of
path matches up with the walk definition of a path).
If u = v , then we call a u, v -walk or trail closed. The length of
a walk, trail or path is the number of edges traversed.
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We will say a walk W contains a path P if the vertices and
edges of P occur in W in order, but not necessarily consecutive.

Lemma 1.1 (Lemma 1.2.5 in the book) : Every u, v -walk
contains a u, v -path.

Proof. We will proceed by induction on the length ℓ of the
u, v -walk W .

If ℓ = 0, then W has no edges, so u = v and there are no
repeated vertices or edges. Thus W is a u, v -path.

Now assume ℓ > 0 and all u, v -walks of length ℓ′ < ℓ contain a
u, v -path. Let W be any u, v -walk of length ℓ. If W does not
repeat any vertices, then W also cannot repeat any edges, so
W is a path by itself. Thus, we may assume there is some
vertex w that appears at least twice in our walk.
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Then W has the form

(u = v0, v1, v2, . . . ,vk1 = w, vk1+1, . . . ,vk2 = w, vk2+1, . . . , vℓ+1 = v)

for some choice of k1, k2 ∈ N, k1 < k2.
(Note 1: v = vℓ+1 because a walk of LENGTH ℓ contains ℓ+ 1
vertices.
Note 2: we are not assuming that G is simple, but we are
suppressing the information about which edges are traversed
because it will not affect the proof).

However, this implies that

W ′ = (u = v0, v1, v2, . . . ,vk1 = vk2 = w, vk2+1, . . . , vℓ+1 = v)

is a subwalk of W of length ℓ′ = ℓ− (k2 − k1) < ℓ. So by our
inductive hypothesis W ′ contains a u, v -path, and thus so does
W . Thus, via induction, we have proved that every u, v -walk
contains a u, v -path.
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A graph G is connected if for each u, v ∈ V (G), G has a
u, v -path (or equivalently a u, v -walk).

Observe that the relation F (u, v) that G has a u, v -path is
reflexive, symmetric and transitive. Hence F is an equivalence
relation, and so partitions V (G) into equivalence classes.
These classes are called connected components of G.

Example: Which of the following cycles are bipartite?

C4,C5,C6,C7?

Lemma 1.2 (Lemma 1.2.15 in the book) : Every closed walk of
odd length contains an odd cycle.

Proof. In Lecture 4.
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Observation: (1) If δ(G) ≥ 2, then G has a cycle;
(2) If G is 2-regular, then each component of G is a cycle.

Proof. If G has a loop, this loop is already a cycle. Suppose, G
is loopless. Consider a longest path, say
P = v0,e1, v1, . . . ,ek , vk in G. Since δ(G) ≥ 2, there is an edge
e0 ̸= e1 incident to v0. Let w be the other end of e0.

By the maximality of P, w ∈ {v1, . . . , vk}. If w = vi , then we
have cycle v0,e1, v1, . . . ,ei , vi ,e0, v0. This proves (1).

Let G be 2-regular and connected. Repeat the proof of (1): If G
has a loop then since ∆(G) = 2, G is a loop. So, suppose, G is
loopless. Consider a longest path, say P = v0,e1, v1, . . . ,ek , vk
in G. Since δ(G) = 2, there is an edge e0 ̸= e1 incident to v0.
Let w be the other end of e0. Since ∆(G) = 2, vertex w can be
only vk .
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Theorem 1.3 (Theorem 1.2.18) Königs Theorem: A graph G is
bipartite if and only if G contains no odd cycles.

Proof. The forward direction is logically equivalent to “If G
contains an odd cycle, then G is not bipartite”, which we have
proved.

We focus on the backwards direction. Observe that it is enough
to prove the theorem for connected graphs. So, assume a
connected G has no odd cycles. Fix a vertex v ∈ V (G).

Construct sets V1,V2, . . . as follows.
Let V1 = {v}. For i = 1,2, . . ., if

⋃i
j=1 Vj = V (G), then Stop,

otherwise, let Vi+1 = N(Vi)−
⋃i

j=1 Vj .

We claim that every Vi is independent.
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The claim is trivial for i = 1. Suppose i > 1, x , y ∈ Vi and
xy ∈ E(G). By the definition of Vi , G contains a path Px from v
to x and a path Py from v to y , each with i − 1 edges. Then the
walk obtained from Px by adding edge xy and then the reverse
of Py is a closed walk if odd length. By Lemma 1.2, it contains
and odd cycle, a contradiction. This proves the claim.

Then the sets S1 = V1 ∪ V3 ∪ V5 ∪ . . . and
S2 = V2 ∪ V4 ∪ V6 ∪ . . . are independent, and thus G is
bipartite.

Theorem 1.4 (Proposition 1.3.3) Degree Sum Formula: For
every graph G, ∑

v∈V (G)

d(v) = 2|E(G)|.

Proof. Each edge has exactly two endpoints, and so
contributes to the sum of degrees exactly twice.
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