Connections, bipartite graphs

Lecture 3



Walks

A walk in a graph Gis alist vy, e1, vq, €2, Vo, ..., €y, vy Of
vertices v; and edges ¢; such that for each 1 </ </, the
endpoints of ¢; are v;_4 and v;.

If the first vertex of a walk is u and the last vertex on the walk is
v, we call this a u, v-walk. When G is a simple graph, we also
may specify a walk by simply listing the vertices, since it is
unambiguous which edge is traversed in each step.
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vertices v; and edges ¢; such that for each 1 </ </, the
endpoints of ¢; are v;_4 and v;.

If the first vertex of a walk is u and the last vertex on the walk is
v, we call this a u, v-walk. When G is a simple graph, we also
may specify a walk by simply listing the vertices, since it is
unambiguous which edge is traversed in each step.

A u, v-trail is a u, v-walk with no repeated edges (but vertices
may repeat). If u # v, a u, v-path is a u, v-walk with no
repeated vertices.

(You should convince yourself that the subgraph definition of
path matches up with the walk definition of a path).

If u = v, then we call a u, v-walk or trail closed. The length of
a walk, trail or path is the number of edges traversed.
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Lemma 1.1 (Lemma 1.2.5 in the book) : Every u, v-walk
contains a u, v-path.

Proof. We will proceed by induction on the length ¢ of the
u, v-walk W.

If £ =0, then W has no edges, so u = v and there are no
repeated vertices or edges. Thus W is a u, v-path.

Now assume ¢ > 0 and all u, v-walks of length ¢’ < ¢ contain a
u, v-path. Let W be any u, v-walk of length ¢. If W does not
repeat any vertices, then W also cannot repeat any edges, so
W is a path by itself. Thus, we may assume there is some
vertex w that appears at least twice in our walk.



Then W has the form
(U: Vo, Vi, Vo, ..., Vg =W, Vi1, 003 Vg = W, Vi 1,000, Vet = V)

for some choice of ki, ko € N, ki < ko.

(Note 1: v = vy, 1 because a walk of LENGTH ¢ contains 7 + 1
vertices.

Note 2: we are not assuming that G is simple, but we are
suppressing the information about which edges are traversed
because it will not affect the proof).



Then W has the form

(U: Vo, Vi, Vo, ..., Vg =W, Vi1, 003 Vg = W, Vi 1,000, Vet = V)

for some choice of ki, ko € N, ki < ko.

(Note 1: v = vy, 1 because a walk of LENGTH ¢ contains 7 + 1
vertices.

Note 2: we are not assuming that G is simple, but we are
suppressing the information about which edges are traversed
because it will not affect the proof).

However, this implies that
W' = (U: Vo, Vi, Vo, ..., Vg, = Vk, =W, Vi1 1y, Vi1 = V)

is a subwalk of W of length ¢/ = ¢ — (ko — k1) < £. So by our
inductive hypothesis W’ contains a u, v-path, and thus so does
W. Thus, via induction, we have proved that every u, v-walk
contains a u, v-path. O
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A graph G is connected if for each u, v € V(G), G has a
u, v-path (or equivalently a u, v-walk).

Observe that the relation F(u, v) that G has a u, v-path is
reflexive, symmetric and transitive. Hence F is an equivalence
relation, and so partitions V(@) into equivalence classes.
These classes are called connected components of G.

Example: Which of the following cycles are bipartite?

Cs4, Cs, Cg, C77

Lemma 1.2 (Lemma 1.2.15 in the book) : Every closed walk of
odd length contains an odd cycle.

Proof. In Lecture 4.
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Observation: (1) If 6(G) > 2, then G has a cycle;
(2) If Gis 2-regular, then each component of G is a cycle.

Proof. If G has a loop, this loop is already a cycle. Suppose, G
is loopless. Consider a longest path, say

P = vy, e, vi,..., e Vcin G. Since §(G) > 2, there is an edge
ey # ey incident to vp. Let w be the other end of &p.

By the maximality of P, w € {vy,..., v}. If w = v;, then we
have cycle vy, ey, vi,..., €, V;, €y, Vo. This proves (1).

Let G be 2-regular and connected. Repeat the proof of (1): If G
has a loop then since A(G) = 2, G is a loop. So, suppose, G is
loopless. Consider a longest path, say P = vy, €1, v4,. .., €k, Vk
in G. Since §(G) = 2, there is an edge ey # ey incident to vy.

Let w be the other end of ey. Since A(G) = 2, vertex w can be
only v. O]
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Theorem 1.3 (Theorem 1.2.18) Kénigs Theorem: A graph G is
bipartite if and only if G contains no odd cycles.

Proof. The forward direction is logically equivalent to “If G
contains an odd cycle, then G is not bipartite”, which we have
proved.

We focus on the backwards direction. Observe that it is enough
to prove the theorem for connected graphs. So, assume a
connected G has no odd cycles. Fix a vertex v € V(G).

Construct sets Vj, V>, ... as follows.
Let V4 = {v}. Fori=1,2,...,if Uy V; = V(G), then Stop,
otherwise, let Vi, 1 = N(V;) — Uj_ V.

We claim that every V; is independent.
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xy € E(G). By the definition of V;, G contains a path Py from v
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of P, is a closed walk if odd length. By Lemma 1.2, it contains
and odd cycle, a contradiction. This proves the claim.
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Theorem 1.4 (Proposition 1.3.3) Degree Sum Formula: For
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Proof. Each edge has exactly two endpoints, and so
contributes to the sum of degrees exactly twice. O



