Plane graphs and planar graphs. Part 1

Lecture 30



A graph G is planar if it has a drawing ¢ without crossings.

A plane graph is a pair (G, ¢) where ¢ is a drawing of G without
crossings.
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Definition of dual graphs: given in class (and book).



Restricted Jordan Curve Theorem: A simple closed polygonal
curve C in the plane partitions the plane into exactly two faces
each having C as boundary.
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Proof. By the definition of ¢(F;), each edge either contributes 1
to the length of two distinct faces or contributes 2 to the length
of one face.



Restricted Jordan Curve Theorem: A simple closed polygonal
curve C in the plane partitions the plane into exactly two faces
each having C as boundary.

By F(G, ¢) we denote the set of faces of the plane graph (G, ¢).
Proposition 6.1: For each plane graph (G, ¢),
Y. UF)=2E(G) (1)
FieF(G.p)

Proof. By the definition of ¢(F;), each edge either contributes 1
to the length of two distinct faces or contributes 2 to the length
of one face.

Theorem 6.2 (Euler’s Formula): For every connected plane
graph (G, ¢),

V(G| - [E(G)] + |F(G, ¢)| = 2.



Proof of Euler's Formula

For given n, we use induction of m = |E(G)|.

Base of induction: m=n— 1. Let (G, ¢) be a plane drawing
of an n-vertex connected graph G with n — 1 edges. By the
Characterization Theorem for trees, G is a tree.
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Proof of Euler's Formula

For given n, we use induction of m = |E(G)|.

Base of induction: m=n— 1. Let (G, ¢) be a plane drawing
of an n-vertex connected graph G with n — 1 edges. By the
Characterization Theorem for trees, G is a tree.

Since G has no cycles, (G, ¢) has only one face. Hence,
\V(G)| - |E(G)| + |F(G, o)l =n—(n-1)+1=2,
as claimed.

Induction step: Suppose the formula holds for all planar
drawings of all n-vertex connected graphs with m — 1 edges.
Let (G, ¢) be a plane drawing of an n-vertex connected graph
G with m edges.



Since m > n, G has a cycle, say C.

In drawing ¢, C forms a closed simple polygonal curve. By
Restricted Jordan Curve Theorem, C divides R? into two
components. Hence each face of (G, ) is either outside of C
or inside of C.



Since m > n, G has a cycle, say C.

In drawing ¢, C forms a closed simple polygonal curve. By
Restricted Jordan Curve Theorem, C divides R? into two
components. Hence each face of (G, ) is either outside of C
or inside of C.

Let e be an edge of C. Let (G, ¢') be obtained from (G, ¢) by
deleting e. Then the two faces of (G, ¢) containing e on the
boundary (one inside C and one outside of C) merge into one
face of (G'. V).
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Since e was not a cut edge, G’ is connected. By the induction
assumption,

[V(G)I - [E(@)| + |F(G, &) =2 (2)
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Corollary 6.3: For n > 3, every simple planar n-vertex graph G
has at most 3n — 6 edges. Moreover, if G is triangle-free, then
G has at most 2n — 4 edges.

Corollary 6.4: Graphs Ks and K3 3 are not planar.
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It is enough to prove the corollary for connected planar simple
graphs. For the main part, even 2-connected.
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Proof: Since ¢(F;) > 4 for each F;, by Proposition 6.1,
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Finishing proof of Corollary 6.3
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Finishing proof of Corollary 6.3

Again, let ¢ be a planar drawing of our triangle-free G. By
Euler's Formula and Claim 2,

2=[V(G) - [E(G) +[F(G,¢) < V(G)] - [E(G)] + %IE(G)I-

Hence ’

é\E(G)\ < |V(G)| -2, as claimed.
Questions: 1. What happens for |V(G)| < 2?

2. In which part(s) of the proof have | used |V(G)| > 3?

Proof of Corollary 6.4. |V(Ks)| = 5 and

|E(Ks)| =10 = 3| V(Ks)| — 5. So, by Cor. 6.3, Ks is not planar.
Similarly, K3 3 is triangle-free, |V(K33)| = 6 and

|E(Ksg)l =9 =2|V(Kss)| — 3.

Again, by Cor. 6.3, K3 3 is not planar.



Subdivisions
A subdivision of an edge e connecting vertices x and y is a
replacement of e with the path x, z, y, where z is a new vertex.

A graph H is a subdivision of a graph G if H can be obtained
from G by series of subdivisions of edges.
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Graph G A subdivision of G.
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Observation: Let H be a subdivision of a graph G. Then H is
planar if and only if G is planar.

Theorem 6.5 (Kuratowski’s Theorem) A graph G is planar if
and only if G does not contain subdivisions of K5 and Kj 5.

A subdivision of K_{3,3} in
Petersen graph.

Note that even after deleting two edges from the Petersen
graph, the remaining graph is not planar.



