
Plane graphs and planar graphs. Part 1

Lecture 30



A graph G is planar if it has a drawing φ without crossings.

A plane graph is a pair (G, φ) where φ is a drawing of G without
crossings.
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A face of a plane graph (G, φ) is a connected component of
R2 − φ(V (G) ∪ E(G)).

The length, ℓ(Fi), of a face Fi in a plane graph (G, φ) is the total
length of the closed walk(s) bounding Fi .

Definition of dual graphs: given in class (and book).
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Restricted Jordan Curve Theorem: A simple closed polygonal
curve C in the plane partitions the plane into exactly two faces
each having C as boundary.

By F (G, φ) we denote the set of faces of the plane graph (G, φ).

Proposition 6.1: For each plane graph (G, φ),∑
Fi∈F (G,φ)

ℓ(Fi) = 2|E(G)|. (1)

Proof. By the definition of ℓ(Fi), each edge either contributes 1
to the length of two distinct faces or contributes 2 to the length
of one face.

Theorem 6.2 (Euler’s Formula): For every connected plane
graph (G, φ),

|V (G)| − |E(G)|+ |F (G, φ)| = 2.
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Proof of Euler’s Formula
For given n, we use induction of m = |E(G)|.
Base of induction: m = n − 1. Let (G, φ) be a plane drawing
of an n-vertex connected graph G with n − 1 edges. By the
Characterization Theorem for trees, G is a tree.

Since G has no cycles, (G, φ) has only one face. Hence,

|V (G)| − |E(G)|+ |F (G, φ)| = n − (n − 1) + 1 = 2,

as claimed.

Induction step: Suppose the formula holds for all planar
drawings of all n-vertex connected graphs with m − 1 edges.
Let (G, φ) be a plane drawing of an n-vertex connected graph
G with m edges.
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Since m ≥ n, G has a cycle, say C.
In drawing φ, C forms a closed simple polygonal curve. By
Restricted Jordan Curve Theorem, C divides R2 into two
components. Hence each face of (G, φ) is either outside of C
or inside of C.

Let e be an edge of C. Let (G′, φ′) be obtained from (G, φ) by
deleting e. Then the two faces of (G, φ) containing e on the
boundary (one inside C and one outside of C) merge into one
face of (G′, φ′).
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Since e was not a cut edge, G′ is connected. By the induction
assumption,

|V (G′)| − |E(G′)|+ |F (G′, φ′)| = 2. (2)

We know that |V (G”)| = |V (G)|, |E(G′)| = |E(G)| − 1 and
|F (G′, φ′)| = |F (G, φ)| − 1. Plugging all this into (2), we get

|V (G)| − (|E(G)| − 1) + (|F (G, φ)| − 1) = 2,

which yields the theorem.

Corollary 6.3: For n ≥ 3, every simple planar n-vertex graph G
has at most 3n − 6 edges. Moreover, if G is triangle-free, then
G has at most 2n − 4 edges.

Corollary 6.4: Graphs K5 and K3,3 are not planar.
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Proof of Corollary 6.3
It is enough to prove the corollary for connected planar simple
graphs. For the main part, even 2-connected.

Claim 1: For each planar drawing φ of G,

3|F (G, φ)| ≤ 2|E(G)|. (3)

Proof: Since ℓ(Fi) ≥ 3 for each Fi , by Proposition 6.1,

2|E(G)| =
∑

Fi∈F (G,φ)

ℓ(Fi) ≥ 3|F (G, φ)|.
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Let φ be a planar drawing of G. By Euler’s Formula and
Claim 1,

2 = |V (G)− |E(G)|+ |F (G, φ)| ≤ |V (G)| − |E(G)|+ 2
3
|E(G)|.

Hence
1
3
|E(G)| ≤ |V (G)| − 2, as claimed.

For the ”Moreover” part, we modify the claim:
Claim 2: For each planar drawing φ of triangle-free G,

|F (G, φ)| ≤ |E(G)|
2

. (4)

Proof: Since ℓ(Fi) ≥ 4 for each Fi , by Proposition 6.1,

2|E(G)| =
∑

Fi∈F (G,φ)

ℓ(Fi) ≥ 4|F (G, φ)|.
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Finishing proof of Corollary 6.3
Again, let φ be a planar drawing of our triangle-free G. By
Euler’s Formula and Claim 2,

2 = |V (G)− |E(G)|+ |F (G, φ)| ≤ |V (G)| − |E(G)|+ 1
2
|E(G)|.

Hence
1
2
|E(G)| ≤ |V (G)| − 2, as claimed.

Questions: 1. What happens for |V (G)| ≤ 2?
2. In which part(s) of the proof have I used |V (G)| ≥ 3?

Proof of Corollary 6.4. |V (K5)| = 5 and
|E(K5)| = 10 = 3|V (K5)| − 5. So, by Cor. 6.3, K5 is not planar.

Similarly, K3,3 is triangle-free, |V (K3,3)| = 6 and
|E(K3,3)| = 9 = 2|V (K3,3)| − 3.
Again, by Cor. 6.3, K3,3 is not planar.
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Subdivisions

A subdivision of an edge e connecting vertices x and y is a
replacement of e with the path x , z, y , where z is a new vertex.

A graph H is a subdivision of a graph G if H can be obtained
from G by series of subdivisions of edges.
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Observation: Let H be a subdivision of a graph G. Then H is
planar if and only if G is planar.

Theorem 6.5 (Kuratowski’s Theorem) A graph G is planar if
and only if G does not contain subdivisions of K5 and K3,3.

Note that even after deleting two edges from the Petersen
graph, the remaining graph is not planar.
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