Plane graphs and planar graphs. Part 1

Lecture 30

A graph G is planar if it has a drawing φ without crossings.
A plane graph is a pair (G, φ) where φ is a drawing of G without crossings.

A graph G is planar if it has a drawing φ without crossings.
A plane graph is a pair (G, φ) where φ is a drawing of G without crossings.

Two distinct plane graphs.

A face of a plane graph (G, φ) is a connected component of $\mathbf{R}^{2}-\varphi(V(G) \cup E(G))$.

A face of a plane graph (G, φ) is a connected component of $\mathbf{R}^{2}-\varphi(V(G) \cup E(G))$.
The length, $\ell\left(F_{i}\right)$, of a face F_{i} in a plane graph (G, φ) is the total length of the closed walk(s) bounding F_{i}.

A face of a plane graph (G, φ) is a connected component of $\mathbf{R}^{2}-\varphi(V(G) \cup E(G))$.
The length, $\ell\left(F_{i}\right)$, of a face F_{i} in a plane graph (G, φ) is the total length of the closed walk(s) bounding F_{i}.

D

A face of a plane graph (G, φ) is a connected component of $\mathbf{R}^{2}-\varphi(V(G) \cup E(G))$.
The length, $\ell\left(F_{i}\right)$, of a face F_{i} in a plane graph (G, φ) is the total length of the closed walk(s) bounding F_{i}.

D

Definition of dual graphs: given in class (and book).

Restricted Jordan Curve Theorem: A simple closed polygonal curve C in the plane partitions the plane into exactly two faces each having C as boundary.

Restricted Jordan Curve Theorem: A simple closed polygonal curve C in the plane partitions the plane into exactly two faces each having C as boundary.

By $F(G, \varphi)$ we denote the set of faces of the plane graph (G, φ).
Proposition 6.1: For each plane graph (G, φ),

$$
\begin{equation*}
\sum_{F_{i} \in F(G, \varphi)} \ell\left(F_{i}\right)=2|E(G)| . \tag{1}
\end{equation*}
$$

Restricted Jordan Curve Theorem: A simple closed polygonal curve C in the plane partitions the plane into exactly two faces each having C as boundary.
By $F(G, \varphi)$ we denote the set of faces of the plane graph (G, φ).
Proposition 6.1: For each plane graph (G, φ),

$$
\begin{equation*}
\sum_{F_{i} \in F(G, \varphi)} \ell\left(F_{i}\right)=2|E(G)| . \tag{1}
\end{equation*}
$$

Proof. By the definition of $\ell\left(F_{i}\right)$, each edge either contributes 1 to the length of two distinct faces or contributes 2 to the length of one face.

Restricted Jordan Curve Theorem: A simple closed polygonal curve C in the plane partitions the plane into exactly two faces each having C as boundary.
By $F(G, \varphi)$ we denote the set of faces of the plane graph (G, φ).
Proposition 6.1: For each plane graph (G, φ),

$$
\begin{equation*}
\sum_{F_{i} \in F(G, \varphi)} \ell\left(F_{i}\right)=2|E(G)| . \tag{1}
\end{equation*}
$$

Proof. By the definition of $\ell\left(F_{i}\right)$, each edge either contributes 1 to the length of two distinct faces or contributes 2 to the length of one face.

Theorem 6.2 (Euler's Formula): For every connected plane graph (G, φ),

$$
|V(G)|-|E(G)|+|F(G, \varphi)|=2 .
$$

Proof of Euler's Formula

For given n, we use induction of $m=|E(G)|$.
Base of induction: $m=n-1$. Let (G, φ) be a plane drawing of an n-vertex connected graph G with $n-1$ edges. By the Characterization Theorem for trees, G is a tree.

Proof of Euler's Formula

For given n, we use induction of $m=|E(G)|$.
Base of induction: $m=n-1$. Let (G, φ) be a plane drawing of an n-vertex connected graph G with $n-1$ edges. By the Characterization Theorem for trees, G is a tree.

Since G has no cycles, (G, φ) has only one face. Hence,

$$
|V(G)|-|E(G)|+|F(G, \varphi)|=n-(n-1)+1=2,
$$

as claimed.

Proof of Euler's Formula

For given n, we use induction of $m=|E(G)|$.
Base of induction: $m=n-1$. Let (G, φ) be a plane drawing of an n-vertex connected graph G with $n-1$ edges. By the Characterization Theorem for trees, G is a tree.

Since G has no cycles, (G, φ) has only one face. Hence,

$$
|V(G)|-|E(G)|+|F(G, \varphi)|=n-(n-1)+1=2,
$$

as claimed.
Induction step: Suppose the formula holds for all planar drawings of all n-vertex connected graphs with $m-1$ edges. Let (G, φ) be a plane drawing of an n-vertex connected graph G with m edges.

Since $m \geq n, G$ has a cycle, say C. In drawing φ, C forms a closed simple polygonal curve. By Restricted Jordan Curve Theorem, C divides \mathbf{R}^{2} into two components. Hence each face of (G, φ) is either outside of C or inside of C.

Since $m \geq n, G$ has a cycle, say C.
In drawing φ, C forms a closed simple polygonal curve. By
Restricted Jordan Curve Theorem, C divides \mathbf{R}^{2} into two
components. Hence each face of (G, φ) is either outside of C or inside of C.

Let e be an edge of C. Let $\left(G^{\prime}, \varphi^{\prime}\right)$ be obtained from (G, φ) by deleting e. Then the two faces of (G, φ) containing e on the boundary (one inside C and one outside of C) merge into one face of ($G^{\prime}, \varphi^{\prime}$).

G
G-e

Since e was not a cut edge, G^{\prime} is connected. By the induction assumption,

$$
\begin{equation*}
\left|V\left(G^{\prime}\right)\right|-\left|E\left(G^{\prime}\right)\right|+\left|F\left(G^{\prime}, \varphi^{\prime}\right)\right|=2 . \tag{2}
\end{equation*}
$$

Since e was not a cut edge, G^{\prime} is connected. By the induction assumption,

$$
\begin{equation*}
\left|V\left(G^{\prime}\right)\right|-\left|E\left(G^{\prime}\right)\right|+\left|F\left(G^{\prime}, \varphi^{\prime}\right)\right|=2 \tag{2}
\end{equation*}
$$

We know that $\left|V\left(G^{\prime \prime}\right)\right|=|V(G)|,\left|E\left(G^{\prime}\right)\right|=|E(G)|-1$ and $\left|F\left(G^{\prime}, \varphi^{\prime}\right)\right|=|F(G, \varphi)|-1$. Plugging all this into (2), we get

$$
|V(G)|-(|E(G)|-1)+(|F(G, \varphi)|-1)=2
$$

which yields the theorem.

Since e was not a cut edge, G^{\prime} is connected. By the induction assumption,

$$
\begin{equation*}
\left|V\left(G^{\prime}\right)\right|-\left|E\left(G^{\prime}\right)\right|+\left|F\left(G^{\prime}, \varphi^{\prime}\right)\right|=2 \tag{2}
\end{equation*}
$$

We know that $\left|V\left(G^{\prime \prime}\right)\right|=|V(G)|,\left|E\left(G^{\prime}\right)\right|=|E(G)|-1$ and $\left|F\left(G^{\prime}, \varphi^{\prime}\right)\right|=|F(G, \varphi)|-1$. Plugging all this into (2), we get

$$
|V(G)|-(|E(G)|-1)+(|F(G, \varphi)|-1)=2
$$

which yields the theorem.
Corollary 6.3: For $n \geq 3$, every simple planar n-vertex graph G has at most $3 n-6$ edges. Moreover, if G is triangle-free, then G has at most $2 n-4$ edges.

Since e was not a cut edge, G^{\prime} is connected. By the induction assumption,

$$
\begin{equation*}
\left|V\left(G^{\prime}\right)\right|-\left|E\left(G^{\prime}\right)\right|+\left|F\left(G^{\prime}, \varphi^{\prime}\right)\right|=2 \tag{2}
\end{equation*}
$$

We know that $\left|V\left(G^{\prime \prime}\right)\right|=|V(G)|,\left|E\left(G^{\prime}\right)\right|=|E(G)|-1$ and $\left|F\left(G^{\prime}, \varphi^{\prime}\right)\right|=|F(G, \varphi)|-1$. Plugging all this into (2), we get

$$
|V(G)|-(|E(G)|-1)+(|F(G, \varphi)|-1)=2
$$

which yields the theorem.
Corollary 6.3: For $n \geq 3$, every simple planar n-vertex graph G has at most $3 n-6$ edges. Moreover, if G is triangle-free, then G has at most $2 n-4$ edges.

Corollary 6.4: Graphs K_{5} and $K_{3,3}$ are not planar.

Proof of Corollary 6.3

It is enough to prove the corollary for connected planar simple graphs. For the main part, even 2-connected.

Proof of Corollary 6.3

It is enough to prove the corollary for connected planar simple graphs. For the main part, even 2-connected.

Claim 1: For each planar drawing φ of G,

$$
\begin{equation*}
3|F(G, \varphi)| \leq 2|E(G)| . \tag{3}
\end{equation*}
$$

Proof of Corollary 6.3

It is enough to prove the corollary for connected planar simple graphs. For the main part, even 2-connected.

Claim 1: For each planar drawing φ of G,

$$
\begin{equation*}
3|F(G, \varphi)| \leq 2|E(G)| . \tag{3}
\end{equation*}
$$

Proof: Since $\ell\left(F_{i}\right) \geq 3$ for each F_{i}, by Proposition 6.1,

$$
2|E(G)|=\sum_{F_{i} \in F(G, \varphi)} \ell\left(F_{i}\right) \geq 3|F(G, \varphi)|
$$

Let φ be a planar drawing of G. By Euler's Formula and Claim 1,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{2}{3}\right| E(G) \right\rvert\,
$$

Let φ be a planar drawing of G. By Euler's Formula and Claim 1,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{2}{3}\right| E(G) \right\rvert\,
$$

Hence

$$
\frac{1}{3}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

Let φ be a planar drawing of G. By Euler's Formula and Claim 1,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{2}{3}\right| E(G) \right\rvert\,
$$

Hence

$$
\frac{1}{3}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

For the "Moreover" part, we modify the claim:
Claim 2: For each planar drawing φ of triangle-free G,

$$
\begin{equation*}
|F(G, \varphi)| \leq \frac{|E(G)|}{2} . \tag{4}
\end{equation*}
$$

Let φ be a planar drawing of G. By Euler's Formula and Claim 1,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{2}{3}\right| E(G) \right\rvert\,
$$

Hence

$$
\frac{1}{3}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

For the "Moreover" part, we modify the claim:
Claim 2: For each planar drawing φ of triangle-free G,

$$
\begin{equation*}
|F(G, \varphi)| \leq \frac{|E(G)|}{2} \tag{4}
\end{equation*}
$$

Proof: Since $\ell\left(F_{i}\right) \geq 4$ for each F_{i}, by Proposition 6.1,

$$
2|E(G)|=\sum_{F_{i} \in F(G, \varphi)} \ell\left(F_{i}\right) \geq 4|F(G, \varphi)|
$$

Finishing proof of Corollary 6.3

Again, let φ be a planar drawing of our triangle-free G. By Euler's Formula and Claim 2,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{1}{2}\right| E(G) \right\rvert\,
$$

Finishing proof of Corollary 6.3

Again, let φ be a planar drawing of our triangle-free G. By Euler's Formula and Claim 2,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{1}{2}\right| E(G) \right\rvert\,
$$

Hence

$$
\frac{1}{2}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

Finishing proof of Corollary 6.3

Again, let φ be a planar drawing of our triangle-free G. By Euler's Formula and Claim 2,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{1}{2}\right| E(G) \right\rvert\,
$$

Hence

$$
\frac{1}{2}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

Questions: 1. What happens for $|V(G)| \leq 2$?
2. In which part(s) of the proof have I used $|V(G)| \geq 3$?

Finishing proof of Corollary 6.3

Again, let φ be a planar drawing of our triangle-free G. By Euler's Formula and Claim 2,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{1}{2}\right| E(G) \right\rvert\,
$$

Hence

$$
\frac{1}{2}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

Questions: 1. What happens for $|V(G)| \leq 2$?
2. In which part(s) of the proof have I used $|V(G)| \geq 3$?

Proof of Corollary 6.4. $\left|V\left(K_{5}\right)\right|=5$ and
$\left|E\left(K_{5}\right)\right|=10=3\left|V\left(K_{5}\right)\right|-5$. So, by Cor. 6.3, K_{5} is not planar.

Finishing proof of Corollary 6.3

Again, let φ be a planar drawing of our triangle-free G. By Euler's Formula and Claim 2,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{1}{2}\right| E(G) \right\rvert\,
$$

Hence

$$
\frac{1}{2}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

Questions: 1. What happens for $|V(G)| \leq 2$?
2. In which part(s) of the proof have I used $|V(G)| \geq 3$?

Proof of Corollary 6.4. $\left|V\left(K_{5}\right)\right|=5$ and
$\left|E\left(K_{5}\right)\right|=10=3\left|V\left(K_{5}\right)\right|-5$. So, by Cor. 6.3, K_{5} is not planar.
Similarly, $K_{3,3}$ is triangle-free, $\left|V\left(K_{3,3}\right)\right|=6$ and
$\left|E\left(K_{3,3}\right)\right|=9=2\left|V\left(K_{3,3}\right)\right|-3$.
Again, by Cor. 6.3, $K_{3,3}$ is not planar.

Subdivisions

A subdivision of an edge e connecting vertices x and y is a replacement of e with the path x, z, y, where z is a new vertex.

A graph H is a subdivision of a graph G if H can be obtained from G by series of subdivisions of edges.

Subdivisions

A subdivision of an edge e connecting vertices x and y is a replacement of e with the path x, z, y, where z is a new vertex.

A graph H is a subdivision of a graph G if H can be obtained from G by series of subdivisions of edges.

Graph G

A subdivision of \mathbf{G}.

Observation: Let H be a subdivision of a graph G. Then H is planar if and only if G is planar.

Observation: Let H be a subdivision of a graph G. Then H is planar if and only if G is planar.

Theorem 6.5 (Kuratowski's Theorem) A graph G is planar if and only if G does not contain subdivisions of K_{5} and $K_{3,3}$.

Observation: Let H be a subdivision of a graph G. Then H is planar if and only if G is planar.

Theorem 6.5 (Kuratowski's Theorem) A graph G is planar if and only if G does not contain subdivisions of K_{5} and $K_{3.3}$.

Note that even after deleting two edges from the Petersen graph, the remaining graph is not planar.

