
Plane graphs and planar graphs. Part 2

Lecture 31



By F (G, φ) we denote the set of faces of the plane graph (G, φ).

Proposition 6.1: For each plane graph (G, φ),∑
Fi∈F (G,φ)

ℓ(Fi) = 2|E(G)|. (1)

Theorem 6.2 (Euler’s Formula): For every connected plane
graph (G, φ),

|V (G)| − |E(G)|+ |F (G, φ)| = 2.

Observation: A graph is planar if and only if it can be drawn on
the sphere.
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Corollary 6.3: For n ≥ 3, every simple planar n-vertex graph G
has at most 3n − 6 edges. Moreover, if G is triangle-free, then
G has at most 2n − 4 edges.

Corollary 6.4: Graphs K5 and K3,3 are not planar.



Proof of Corollary 6.3
It is enough to prove the corollary for connected planar simple
graphs.

Claim 1: For each planar drawing φ of G,

3|F (G, φ)| ≤ 2|E(G)|. (3)

Proof: Since ℓ(Fi) ≥ 3 for each Fi , by Proposition 6.1,

2|E(G)| =
∑

Fi∈F (G,φ)
ℓ(Fi) ≥ 3|F (G, φ)|.

Let φ be a planar drawing of G. By Euler’s Formula and
Claim 1,

2 = |V (G)− |E(G)|+ |F (G, φ)| ≤ |V (G)| − |E(G)|+ 2
3
|E(G)|.



Hence
1
3
|E(G)| ≤ |V (G)| − 2, as claimed.

For the ”Moreover” part, we modify the claim:
Claim 2: For each planar drawing φ of triangle-free G,
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2

. (4)
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Again, let φ be a planar drawing of our triangle-free G. By
Euler’s Formula and Claim 2,

2 = |V (G)− |E(G)|+ |F (G, φ)| ≤ |V (G)| − |E(G)|+ 1
2
|E(G)|.

Hence
1
2
|E(G)| ≤ |V (G)| − 2, as claimed.

Questions: 1. What happens for |V (G)| ≤ 2?
2. In which part(s) of the proof have I used |V (G)| ≥ 3?

Proof of Corollary 6.4. |V (K5)| = 5 and
|E(K5)| = 10 = 3|V (K5)| − 5. So, by Cor. 6.3, K5 is not planar.

Similarly, K3,3 is triangle-free, |V (K3,3)| = 6 and
|E(K3,3)| = 9 = 2|V (K3,3)| − 3.
Again, by Cor. 6.3, K3,3 is not planar.
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Subdivisions

A subdivision of an edge e connecting vertices x and y is a
replacement of e with the path x , z, y , where z is a new vertex.

A graph H is a subdivision of a graph G if H can be obtained
from G by series of subdivisions of edges.
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Observation: Let H be a subdivision of a graph G. Then H is
planar if and only if G is planar.

Theorem 6.5 (Kuratowski’s Theorem) A graph G is planar if
and only if G does not contain subdivisions of K5 and K3,3.

Note that even after deleting two edges from the Petersen
graph, the remaining graph is not planar.
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Contractions
A contraction of an edge xy in a simple graph G is a
replacement of the vertices x and y with a new vertex x ∗ y
whose neighborhood is N(x) ∪ N(y)− x − y .

A graph H is a minor of graph G, if H can be obtained from G
by a sequence of the following operations:
(a) deleting a vertex, (b) deleting an edge,
(c) contracting an edge.
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Observation: Let H be a planar graph. Then after contracting
any edge the resulting graph is planar.

Theorem 6.6 (Wagner): A graph G is planar if and only if G
does not contain K5 and K3,3 as minors.

Proof. We use contrapositive in both directions. Assume first
that G contains a minor H of K5 or K3,3. Since H is not planar,
by the observation above, G is also not planar.

Suppose now that G is not planar. Then by Theorem 6.5, G
contains a subdivision G′ of H ∈ {K5,K3,3}. But the fact that G′

is a subdivision of H implies that H is a minor of G′. Since each
subgraph of G is a minor of G, our graph H ∈ {K5,K3,3} is a
minor of G.
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Outerplanar and outerplane graphs
A pair (G, φ) forms an outerplane graph if all the vertices of G
are on the boundary of the unbounded face.

A graph G is outerplanar if it has a drawing φ such that the pair
(G, φ) forms an outerplane graph.

Theorem 6.7: A graph G is outerplanar if and only if G does
not contain subdivisions of K4 and K2,3.

Proof. Let G∗ be obtained from G by adding a new vertex y
adjacent to each vertex of G.

Claim 1: G∗ is planar if and only if G is outerplanar.

Proof of Claim 1. If G∗ is planar, draw it so that y is on the outer
face. Delete y . In the obtained drawing of G, all vertices are on
the outer face.
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If G is outerplanar, let φ be a drawing of G such that all vertices
are on the boundary of the outer face. Then we can draw y in
the outer face and connect it to all vertices of G so that we get
a planar drawing of G∗. This proves the claim.

Thus by Claim 1 and Kuratowski’s Theorem, if G is outerplanar,
then G∗ does not contain subdivisions of K5 and K3,3. But then
G = G∗ − y cannot contain a subdivision of K4 or K2,3.
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On the other hand, by the same claim and the same theorem, if
G is not outerplanar, then G∗ contains a subdivision of K5 or of
K3,3. In the first case, G = G∗ − y contains a subdivision of K4.
In the second case, it contains a subdivision of K2,3.
This proves Theorem 6.7.

A simple graph is maximal planar if it is planar but adding any
non-loop edge not parallel to any edge of G results in a
nonplanar graph.

A triangluation is a plane graph (G, φ) such that every face of it
is a 3-cycle.

Theorem 6.8: Let n ≥ 3. For a simple n-vertex plane graph
(G, φ), TFAE:
(A) G has 3n − 6 edges;
(B) (G, φ) is a triangulation;
(C) G is maximal planar.
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Proof of Theorem 6.8:
(A) ⇒ (C). By Cor. 6.3, a simple n-vertex planar graph cannot
have 3n − 5 edges. Thus (A) implies (C).

(B) ⇒ (A). If (G, φ) is a triangulation, then 3|F (G, φ)| = 2|E(G)|.
Plugging this into Euler’s Formula, we get

2 = n − |E(G)|+ 2
3
|E(G)| = n − 1

3
|E(G)|,

which is equivalent to |E(G)| = 3(n − 2) = 3n − 6.

(C) ⇒ (B). Let G be maximal planar and φ be a drawing of G.
As in the proof of Corollary 6.3, G is 2-connected.



Proof of Theorem 6.8:
(A) ⇒ (C). By Cor. 6.3, a simple n-vertex planar graph cannot
have 3n − 5 edges. Thus (A) implies (C).

(B) ⇒ (A). If (G, φ) is a triangulation, then 3|F (G, φ)| = 2|E(G)|.
Plugging this into Euler’s Formula, we get

2 = n − |E(G)|+ 2
3
|E(G)| = n − 1

3
|E(G)|,

which is equivalent to |E(G)| = 3(n − 2) = 3n − 6.

(C) ⇒ (B). Let G be maximal planar and φ be a drawing of G.
As in the proof of Corollary 6.3, G is 2-connected.



Proof of Theorem 6.8:
(A) ⇒ (C). By Cor. 6.3, a simple n-vertex planar graph cannot
have 3n − 5 edges. Thus (A) implies (C).

(B) ⇒ (A). If (G, φ) is a triangulation, then 3|F (G, φ)| = 2|E(G)|.
Plugging this into Euler’s Formula, we get

2 = n − |E(G)|+ 2
3
|E(G)| = n − 1

3
|E(G)|,

which is equivalent to |E(G)| = 3(n − 2) = 3n − 6.

(C) ⇒ (B). Let G be maximal planar and φ be a drawing of G.
As in the proof of Corollary 6.3, G is 2-connected.



Finishing proof of Theorem 6.8
Since G is 2-connected, the boundary of each face is a cycle.
Suppose the boundary of some face F1 of (G, φ) is a cycle
v1, v2, . . . , vk for some k ≥ 4.

Then we try to add the edge v1v3 inside F1.

The only possibility that we fail is that G already has edge v1v3.
In this case, G has no edge v2v4, and we can add this edge
inside F1, a contradiction to the maximality of G.



Finishing proof of Theorem 6.8
Since G is 2-connected, the boundary of each face is a cycle.
Suppose the boundary of some face F1 of (G, φ) is a cycle
v1, v2, . . . , vk for some k ≥ 4.
Then we try to add the edge v1v3 inside F1.

The only possibility that we fail is that G already has edge v1v3.
In this case, G has no edge v2v4, and we can add this edge
inside F1, a contradiction to the maximality of G.



Finishing proof of Theorem 6.8
Since G is 2-connected, the boundary of each face is a cycle.
Suppose the boundary of some face F1 of (G, φ) is a cycle
v1, v2, . . . , vk for some k ≥ 4.
Then we try to add the edge v1v3 inside F1.

The only possibility that we fail is that G already has edge v1v3.
In this case, G has no edge v2v4, and we can add this edge
inside F1, a contradiction to the maximality of G.



Main results in Chapter 6:
1. Euler’s Formula.

2. Kuratowski’s Theorem.


