Plane graphs and planar graphs. Part 2

Lecture 31

By $F(G, \varphi)$ we denote the set of faces of the plane graph (G, φ) . Proposition 6.1: For each plane graph (G, φ) ,

$$\sum_{F_i \in F(G,\varphi)} \ell(F_i) = 2|E(G)|.$$
(1)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 6.2 (Euler's Formula): For every connected plane graph (G, φ) ,

$$|V(G)| - |E(G)| + |F(G,\varphi)| = 2.$$

Observation: A graph is planar if and only if it can be drawn on the sphere.

By $F(G, \varphi)$ we denote the set of faces of the plane graph (G, φ) . Proposition 6.1: For each plane graph (G, φ) ,

$$\sum_{F_i \in F(G,\varphi)} \ell(F_i) = 2|E(G)|.$$
(2)

(日) (日) (日) (日) (日) (日) (日)

Corollary 6.3: For $n \ge 3$, every simple planar *n*-vertex graph *G* has at most 3n - 6 edges. Moreover, if *G* is triangle-free, then *G* has at most 2n - 4 edges.

Corollary 6.4: Graphs K_5 and $K_{3,3}$ are not planar.

Proof of Corollary 6.3

It is enough to prove the corollary for connected planar simple graphs.

Claim 1: For each planar drawing φ of *G*,

 $3|F(G,\varphi)| \le 2|E(G)|. \tag{3}$

Proof: Since $\ell(F_i) \ge 3$ for each F_i , by Proposition 6.1,

$$2|E(G)| = \sum_{F_i \in F(G,\varphi)} \ell(F_i) \ge 3|F(G,\varphi)|.$$

Let φ be a planar drawing of *G*. By Euler's Formula and Claim 1,

 $2 = |V(G) - |E(G)| + |F(G,\varphi)| \le |V(G)| - |E(G)| + \frac{2}{3}|E(G)|.$

Hence

$$\frac{1}{3}|E(G)| \le |V(G)| - 2$$
, as claimed.

Hence

$$\frac{1}{3}|E(G)| \le |V(G)| - 2, \quad \text{as claimed.}$$

For the "Moreover" part, we modify the claim: Claim 2: For each planar drawing φ of triangle-free *G*,

$$|F(G,\varphi)| \leq \frac{|E(G)|}{2}.$$
 (4)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Hence

$$\frac{1}{3}|E(G)| \le |V(G)| - 2, \quad \text{as claimed.}$$

For the "Moreover" part, we modify the claim: Claim 2: For each planar drawing φ of triangle-free *G*,

$$|F(G,\varphi)| \leq \frac{|E(G)|}{2}.$$
 (4)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proof: Since $\ell(F_i) \ge 4$ for each F_i , by Proposition 6.1,

$$2|E(G)| = \sum_{F_i \in F(G, \varphi)} \ell(F_i) \ge 4|F(G, \varphi)|.$$

 $2 = |V(G) - |E(G)| + |F(G,\varphi)| \le |V(G)| - |E(G)| + \frac{1}{2}|E(G)|.$

(ロ) (同) (三) (三) (三) (○) (○)

$$2 = |V(G) - |E(G)| + |F(G,\varphi)| \le |V(G)| - |E(G)| + \frac{1}{2}|E(G)|.$$

Hence
$$\frac{1}{2}|E(G)| \le |V(G)| - 2, \quad \text{as claimed.}$$

н

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$2 = |V(G) - |E(G)| + |F(G,\varphi)| \le |V(G)| - |E(G)| + \frac{1}{2}|E(G)|.$$

Hence
$$\frac{1}{2}|E(G)| \le |V(G)| - 2, \quad \text{as claimed.}$$

4

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Questions: 1. What happens for $|V(G)| \le 2$? 2. In which part(s) of the proof have I used $|V(G)| \ge 3$?

$$2 = |V(G) - |E(G)| + |F(G,\varphi)| \le |V(G)| - |E(G)| + \frac{1}{2}|E(G)|.$$

Hence
$$\frac{1}{2}|E(G)| \le |V(G)| - 2, \quad \text{as claimed.}$$

Questions: 1. What happens for $|V(G)| \le 2$? 2. In which part(s) of the proof have I used $|V(G)| \ge 3$?

Proof of Corollary 6.4. $|V(K_5)| = 5$ and $|E(K_5)| = 10 = 3|V(K_5)| - 5$. So, by Cor. 6.3, K_5 is not planar.

Similarly, $K_{3,3}$ is triangle-free, $|V(K_{3,3})| = 6$ and $|E(K_{3,3})| = 9 = 2|V(K_{3,3})| - 3$. Again, by Cor. 6.3, $K_{3,3}$ is not planar.

Subdivisions

A subdivision of an edge *e* connecting vertices *x* and *y* is a replacement of *e* with the path x, z, y, where *z* is a new vertex.

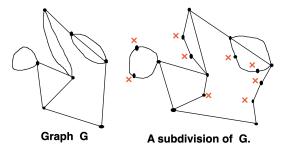
A graph H is a subdivision of a graph G if H can be obtained from G by series of subdivisions of edges.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Subdivisions

A subdivision of an edge *e* connecting vertices *x* and *y* is a replacement of *e* with the path x, z, y, where *z* is a new vertex.

A graph H is a subdivision of a graph G if H can be obtained from G by series of subdivisions of edges.



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ●

Observation: Let H be a subdivision of a graph G. Then H is planar if and only if G is planar.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

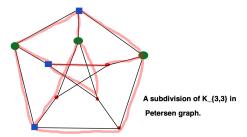
Observation: Let H be a subdivision of a graph G. Then H is planar if and only if G is planar.

Theorem 6.5 (Kuratowski's Theorem) A graph *G* is planar if and only if *G* does not contain subdivisions of K_5 and $K_{3,3}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Observation: Let H be a subdivision of a graph G. Then H is planar if and only if G is planar.

Theorem 6.5 (Kuratowski's Theorem) A graph *G* is planar if and only if *G* does not contain subdivisions of K_5 and $K_{3.3}$.



(ロ) (同) (三) (三) (三) (○) (○)

Note that even after deleting two edges from the Petersen graph, the remaining graph is not planar.

Contractions

A contraction of an edge xy in a simple graph G is a replacement of the vertices x and y with a new vertex x * y whose neighborhood is $N(x) \cup N(y) - x - y$.

Contractions

A contraction of an edge xy in a simple graph G is a replacement of the vertices x and y with a new vertex x * y whose neighborhood is $N(x) \cup N(y) - x - y$.

A graph H is a minor of graph G, if H can be obtained from G by a sequence of the following operations:

(日) (日) (日) (日) (日) (日) (日)

(a) deleting a vertex, (b) deleting an edge,

(c) contracting an edge.

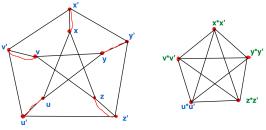
Contractions

A contraction of an edge xy in a simple graph G is a replacement of the vertices x and y with a new vertex x * y whose neighborhood is $N(x) \cup N(y) - x - y$.

A graph H is a minor of graph G, if H can be obtained from G by a sequence of the following operations:

(a) deleting a vertex, (b) deleting an edge,

(c) contracting an edge.



Contracting Petersen graph to K_5.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem 6.6 (Wagner): A graph *G* is planar if and only if *G* does not contain K_5 and $K_{3,3}$ as minors.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem 6.6 (Wagner): A graph G is planar if and only if G does not contain K_5 and $K_{3,3}$ as minors.

Proof. We use contrapositive in both directions. Assume first that *G* contains a minor *H* of K_5 or $K_{3,3}$. Since *H* is not planar, by the observation above, *G* is also not planar.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 6.6 (Wagner): A graph G is planar if and only if G does not contain K_5 and $K_{3,3}$ as minors.

Proof. We use contrapositive in both directions. Assume first that *G* contains a minor *H* of K_5 or $K_{3,3}$. Since *H* is not planar, by the observation above, *G* is also not planar.

Suppose now that *G* is not planar. Then by **Theorem 6.5**, *G* contains a subdivision *G'* of $H \in \{K_5, K_{3,3}\}$. But the fact that *G'* is a subdivision of *H* implies that *H* is a minor of *G'*. Since each subgraph of *G* is a minor of *G*, our graph $H \in \{K_5, K_{3,3}\}$ is a minor of *G*.

A pair (G, φ) forms an outerplane graph if all the vertices of *G* are on the boundary of the unbounded face.

A pair (G, φ) forms an outerplane graph if all the vertices of *G* are on the boundary of the unbounded face.

A graph *G* is outerplanar if it has a drawing φ such that the pair (G, φ) forms an outerplane graph.

(ロ) (同) (三) (三) (三) (○) (○)

A pair (G, φ) forms an outerplane graph if all the vertices of *G* are on the boundary of the unbounded face.

A graph *G* is outerplanar if it has a drawing φ such that the pair (G, φ) forms an outerplane graph.

Theorem 6.7: A graph *G* is outerplanar if and only if *G* does not contain subdivisions of K_4 and $K_{2,3}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A pair (G, φ) forms an outerplane graph if all the vertices of *G* are on the boundary of the unbounded face.

A graph *G* is outerplanar if it has a drawing φ such that the pair (G, φ) forms an outerplane graph.

Theorem 6.7: A graph *G* is outerplanar if and only if *G* does not contain subdivisions of K_4 and $K_{2,3}$.

Proof. Let G^* be obtained from G by adding a new vertex y adjacent to each vertex of G.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A pair (G, φ) forms an outerplane graph if all the vertices of *G* are on the boundary of the unbounded face.

A graph *G* is outerplanar if it has a drawing φ such that the pair (G, φ) forms an outerplane graph.

Theorem 6.7: A graph *G* is outerplanar if and only if *G* does not contain subdivisions of K_4 and $K_{2,3}$.

Proof. Let G^* be obtained from G by adding a new vertex y adjacent to each vertex of G.

Claim 1: G^* is planar if and only if G is outerplanar.

A pair (G, φ) forms an outerplane graph if all the vertices of *G* are on the boundary of the unbounded face.

A graph *G* is outerplanar if it has a drawing φ such that the pair (G, φ) forms an outerplane graph.

Theorem 6.7: A graph *G* is outerplanar if and only if *G* does not contain subdivisions of K_4 and $K_{2,3}$.

Proof. Let G^* be obtained from G by adding a new vertex y adjacent to each vertex of G.

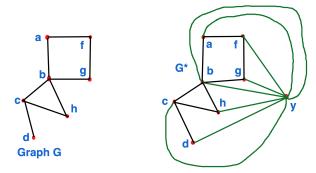
Claim 1: *G*^{*} is planar if and only if *G* is outerplanar.

Proof of Claim 1. If G^* is planar, draw it so that y is on the outer face. Delete y. In the obtained drawing of G, all vertices are on the outer face.

If *G* is outerplanar, let φ be a drawing of *G* such that all vertices are on the boundary of the outer face. Then we can draw *y* in the outer face and connect it to all vertices of *G* so that we get a planar drawing of *G*^{*}. This proves the claim.

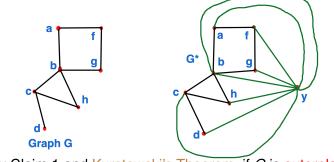
(ロ) (同) (三) (三) (三) (○) (○)

If *G* is outerplanar, let φ be a drawing of *G* such that all vertices are on the boundary of the outer face. Then we can draw *y* in the outer face and connect it to all vertices of *G* so that we get a planar drawing of *G*^{*}. This proves the claim.



(ロ) (同) (三) (三) (三) (○) (○)

If *G* is outerplanar, let φ be a drawing of *G* such that all vertices are on the boundary of the outer face. Then we can draw *y* in the outer face and connect it to all vertices of *G* so that we get a planar drawing of *G*^{*}. This proves the claim.



Thus by Claim 1 and Kuratowski's Theorem, if *G* is outerplanar, then G^* does not contain subdivisions of K_5 and $K_{3,3}$. But then $G = G^* - y$ cannot contain a subdivision of K_4 or $K_{2,3}$.

(ロ) (同) (三) (三) (三) (○) (○)

A simple graph is maximal planar if it is planar but adding any non-loop edge not parallel to any edge of *G* results in a nonplanar graph.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

A simple graph is maximal planar if it is planar but adding any non-loop edge not parallel to any edge of *G* results in a nonplanar graph.

A triangluation is a plane graph (G, φ) such that every face of it is a 3-cycle.

A simple graph is maximal planar if it is planar but adding any non-loop edge not parallel to any edge of *G* results in a nonplanar graph.

A triangluation is a plane graph (G, φ) such that every face of it is a 3-cycle.

Theorem 6.8: Let $n \ge 3$. For a simple *n*-vertex plane graph (G, φ) , TFAE: (A) *G* has 3n - 6 edges; (B) (G, φ) is a triangulation; (C) *G* is maximal planar.

Proof of Theorem 6.8:

(A) \Rightarrow (C). By Cor. 6.3, a simple *n*-vertex planar graph cannot have 3n - 5 edges. Thus (A) implies (C).

Proof of Theorem 6.8:

(A) \Rightarrow (C). By Cor. 6.3, a simple *n*-vertex planar graph cannot have 3n - 5 edges. Thus (A) implies (C).

(B) \Rightarrow (A). If (G, φ) is a triangulation, then $3|F(G, \varphi)| = 2|E(G)|$. Plugging this into Euler's Formula, we get

$$2 = n - |E(G)| + \frac{2}{3}|E(G)| = n - \frac{1}{3}|E(G)|,$$

(日) (日) (日) (日) (日) (日) (日)

which is equivalent to |E(G)| = 3(n-2) = 3n-6.

Proof of Theorem 6.8:

(A) \Rightarrow (C). By Cor. 6.3, a simple *n*-vertex planar graph cannot have 3n - 5 edges. Thus (A) implies (C).

(B) \Rightarrow (A). If (G, φ) is a triangulation, then $3|F(G, \varphi)| = 2|E(G)|$. Plugging this into Euler's Formula, we get

$$2 = n - |E(G)| + \frac{2}{3}|E(G)| = n - \frac{1}{3}|E(G)|,$$

which is equivalent to |E(G)| = 3(n-2) = 3n-6.

(C) \Rightarrow (B). Let *G* be maximal planar and φ be a drawing of *G*. As in the proof of Corollary 6.3. *G* is 2-connected.

Finishing proof of Theorem 6.8

Since *G* is 2-connected, the boundary of each face is a cycle. Suppose the boundary of some face F_1 of (G, φ) is a cycle v_1, v_2, \ldots, v_k for some $k \ge 4$.

Finishing proof of Theorem 6.8

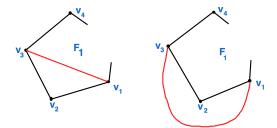
Since *G* is 2-connected, the boundary of each face is a cycle. Suppose the boundary of some face F_1 of (G, φ) is a cycle v_1, v_2, \ldots, v_k for some $k \ge 4$. Then we try to add the edge $v_1 v_3$ inside F_1 .



イロト 不良 とくほ とくほう 二日

Finishing proof of Theorem 6.8

Since *G* is 2-connected, the boundary of each face is a cycle. Suppose the boundary of some face F_1 of (G, φ) is a cycle v_1, v_2, \ldots, v_k for some $k \ge 4$. Then we try to add the edge $v_1 v_3$ inside F_1 .



The only possibility that we fail is that *G* already has edge $v_1 v_3$. In this case, *G* has no edge $v_2 v_4$, and we can add this edge inside F_1 , a contradiction to the maximality of *G*.

Main results in Chapter 6:

- 1. Euler's Formula.
- 2. Kuratowski's Theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ