Plane graphs and planar graphs. Part 2

Lecture 31

By $F(G, \varphi)$ we denote the set of faces of the plane graph (G, φ).
Proposition 6.1: For each plane graph (G, φ),

$$
\begin{equation*}
\sum_{F_{i} \in F(G, \varphi)} \ell\left(F_{i}\right)=2|E(G)| . \tag{1}
\end{equation*}
$$

Theorem 6.2 (Euler's Formula): For every connected plane graph (G, φ),

$$
|V(G)|-|E(G)|+|F(G, \varphi)|=2
$$

Observation: A graph is planar if and only if it can be drawn on the sphere.

By $F(G, \varphi)$ we denote the set of faces of the plane graph (G, φ).
Proposition 6.1: For each plane graph (G, φ),

$$
\begin{equation*}
\sum_{F_{i} \in F(G, \varphi)} \ell\left(F_{i}\right)=2|E(G)| \tag{2}
\end{equation*}
$$

Corollary 6.3: For $n \geq 3$, every simple planar n-vertex graph G has at most $3 n-6$ edges. Moreover, if G is triangle-free, then G has at most $2 n-4$ edges.

Corollary 6.4: Graphs K_{5} and $K_{3,3}$ are not planar.

Proof of Corollary 6.3

It is enough to prove the corollary for connected planar simple graphs.

Claim 1: For each planar drawing φ of G,

$$
\begin{equation*}
3|F(G, \varphi)| \leq 2|E(G)| . \tag{3}
\end{equation*}
$$

Proof: Since $\ell\left(F_{i}\right) \geq 3$ for each F_{i}, by Proposition 6.1,

$$
2|E(G)|=\sum_{F_{i} \in F(G, \varphi)} \ell\left(F_{i}\right) \geq 3|F(G, \varphi)|
$$

Let φ be a planar drawing of G. By Euler's Formula and Claim 1,
$\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{2}{3}\right| E(G) \right\rvert\,$.

Hence

$$
\frac{1}{3}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

Hence

$$
\frac{1}{3}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

For the "Moreover" part, we modify the claim:
Claim 2: For each planar drawing φ of triangle-free G,

$$
\begin{equation*}
|F(G, \varphi)| \leq \frac{|E(G)|}{2} . \tag{4}
\end{equation*}
$$

Hence

$$
\frac{1}{3}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

For the "Moreover" part, we modify the claim:
Claim 2: For each planar drawing φ of triangle-free G,

$$
\begin{equation*}
|F(G, \varphi)| \leq \frac{|E(G)|}{2} . \tag{4}
\end{equation*}
$$

Proof: Since $\ell\left(F_{i}\right) \geq 4$ for each F_{i}, by Proposition 6.1,

$$
2|E(G)|=\sum_{F_{i} \in F(G, \varphi)} \ell\left(F_{i}\right) \geq 4|F(G, \varphi)| .
$$

Again, let φ be a planar drawing of our triangle-free G. By Euler's Formula and Claim 2,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{1}{2}\right| E(G) \right\rvert\, .
$$

Again, let φ be a planar drawing of our triangle-free G. By Euler's Formula and Claim 2,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{1}{2}\right| E(G) \right\rvert\, .
$$

Hence

$$
\frac{1}{2}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

Again, let φ be a planar drawing of our triangle-free G. By Euler's Formula and Claim 2,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{1}{2}\right| E(G) \right\rvert\, .
$$

Hence

$$
\frac{1}{2}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

Questions: 1. What happens for $|V(G)| \leq 2$?
2. In which part(s) of the proof have I used $|V(G)| \geq 3$?

Again, let φ be a planar drawing of our triangle-free G. By Euler's Formula and Claim 2,

$$
\left.2=\left|V(G)-|E(G)|+|F(G, \varphi)| \leq|V(G)|-|E(G)|+\frac{1}{2}\right| E(G) \right\rvert\, .
$$

Hence

$$
\frac{1}{2}|E(G)| \leq|V(G)|-2, \quad \text { as claimed. }
$$

Questions: 1. What happens for $|V(G)| \leq 2$?
2. In which part(s) of the proof have I used $|V(G)| \geq 3$?

Proof of Corollary 6.4. $\left|V\left(K_{5}\right)\right|=5$ and
$\left|E\left(K_{5}\right)\right|=10=3\left|V\left(K_{5}\right)\right|-5$. So, by Cor. 6.3, K_{5} is not planar.
Similarly, $K_{3,3}$ is triangle-free, $\left|V\left(K_{3,3}\right)\right|=6$ and $\left|E\left(K_{3,3}\right)\right|=9=2\left|V\left(K_{3,3}\right)\right|-3$.
Again, by Cor. 6.3, $K_{3,3}$ is not planar.

Subdivisions

A subdivision of an edge e connecting vertices x and y is a replacement of e with the path x, z, y, where z is a new vertex.

A graph H is a subdivision of a graph G if H can be obtained from G by series of subdivisions of edges.

Subdivisions

A subdivision of an edge e connecting vertices x and y is a replacement of e with the path x, z, y, where z is a new vertex.

A graph H is a subdivision of a graph G if H can be obtained from G by series of subdivisions of edges.

Graph G

A subdivision of \mathbf{G}.

Observation: Let H be a subdivision of a graph G. Then H is planar if and only if G is planar.

Observation: Let H be a subdivision of a graph G. Then H is planar if and only if G is planar.

Theorem 6.5 (Kuratowski's Theorem) A graph G is planar if and only if G does not contain subdivisions of K_{5} and $K_{3,3}$.

Observation: Let H be a subdivision of a graph G. Then H is planar if and only if G is planar.

Theorem 6.5 (Kuratowski's Theorem) A graph G is planar if and only if G does not contain subdivisions of K_{5} and $K_{3.3}$.

Note that even after deleting two edges from the Petersen graph, the remaining graph is not planar.

Contractions

A contraction of an edge $x y$ in a simple graph G is a replacement of the vertices x and y with a new vertex $x * y$ whose neighborhood is $N(x) \cup N(y)-x-y$.

Contractions

A contraction of an edge $x y$ in a simple graph G is a replacement of the vertices x and y with a new vertex $x * y$ whose neighborhood is $N(x) \cup N(y)-x-y$.
A graph H is a minor of graph G, if H can be obtained from G by a sequence of the following operations:
(a) deleting a vertex,
(b) deleting an edge,
(c) contracting an edge.

Contractions

A contraction of an edge $x y$ in a simple graph G is a replacement of the vertices x and y with a new vertex $x * y$ whose neighborhood is $N(x) \cup N(y)-x-y$.
A graph H is a minor of graph G, if H can be obtained from G by a sequence of the following operations:
(a) deleting a vertex,
(b) deleting an edge,
(c) contracting an edge.

Observation: Let H be a planar graph. Then after contracting any edge the resulting graph is planar.

Observation: Let H be a planar graph. Then after contracting any edge the resulting graph is planar.

Theorem 6.6 (Wagner): A graph G is planar if and only if G does not contain K_{5} and $K_{3,3}$ as minors.

Observation: Let H be a planar graph. Then after contracting any edge the resulting graph is planar.

Theorem 6.6 (Wagner): A graph G is planar if and only if G does not contain K_{5} and $K_{3,3}$ as minors.

Proof. We use contrapositive in both directions. Assume first that G contains a minor H of K_{5} or $K_{3,3}$. Since H is not planar, by the observation above, G is also not planar.

Observation: Let H be a planar graph. Then after contracting any edge the resulting graph is planar.

Theorem 6.6 (Wagner): A graph G is planar if and only if G does not contain K_{5} and $K_{3,3}$ as minors.

Proof. We use contrapositive in both directions. Assume first that G contains a minor H of K_{5} or $K_{3,3}$. Since H is not planar, by the observation above, G is also not planar.

Suppose now that G is not planar. Then by Theorem 6.5, G contains a subdivision G^{\prime} of $H \in\left\{K_{5}, K_{3,3}\right\}$. But the fact that G^{\prime} is a subdivision of H implies that H is a minor of G^{\prime}. Since each subgraph of G is a minor of G, our graph $H \in\left\{K_{5}, K_{3,3}\right\}$ is a minor of G.

Outerplanar and outerplane graphs

A pair (G, φ) forms an outerplane graph if all the vertices of G are on the boundary of the unbounded face.

Outerplanar and outerplane graphs

A pair (G, φ) forms an outerplane graph if all the vertices of G are on the boundary of the unbounded face.

A graph G is outerplanar if it has a drawing φ such that the pair (G, φ) forms an outerplane graph.

Outerplanar and outerplane graphs

A pair (G, φ) forms an outerplane graph if all the vertices of G are on the boundary of the unbounded face.

A graph G is outerplanar if it has a drawing φ such that the pair (G, φ) forms an outerplane graph.

Theorem 6.7: A graph G is outerplanar if and only if G does not contain subdivisions of K_{4} and $K_{2,3}$.

Outerplanar and outerplane graphs

A pair (G, φ) forms an outerplane graph if all the vertices of G are on the boundary of the unbounded face.

A graph G is outerplanar if it has a drawing φ such that the pair (G, φ) forms an outerplane graph.

Theorem 6.7: A graph G is outerplanar if and only if G does not contain subdivisions of K_{4} and $K_{2,3}$.
Proof. Let G^{*} be obtained from G by adding a new vertex y adjacent to each vertex of G.

Outerplanar and outerplane graphs

A pair (G, φ) forms an outerplane graph if all the vertices of G are on the boundary of the unbounded face.

A graph G is outerplanar if it has a drawing φ such that the pair (G, φ) forms an outerplane graph.

Theorem 6.7: A graph G is outerplanar if and only if G does not contain subdivisions of K_{4} and $K_{2,3}$.
Proof. Let G^{*} be obtained from G by adding a new vertex y adjacent to each vertex of G.

Claim 1: G^{*} is planar if and only if G is outerplanar.

Outerplanar and outerplane graphs

A pair (G, φ) forms an outerplane graph if all the vertices of G are on the boundary of the unbounded face.

A graph G is outerplanar if it has a drawing φ such that the pair (G, φ) forms an outerplane graph.

Theorem 6.7: A graph G is outerplanar if and only if G does not contain subdivisions of K_{4} and $K_{2,3}$.
Proof. Let G^{*} be obtained from G by adding a new vertex y adjacent to each vertex of G.

Claim 1: G^{*} is planar if and only if G is outerplanar.
Proof of Claim 1. If G^{*} is planar, draw it so that y is on the outer face. Delete y. In the obtained drawing of G, all vertices are on the outer face.

If G is outerplanar, let φ be a drawing of G such that all vertices are on the boundary of the outer face. Then we can draw y in the outer face and connect it to all vertices of G so that we get a planar drawing of G^{*}. This proves the claim.

If G is outerplanar, let φ be a drawing of G such that all vertices are on the boundary of the outer face. Then we can draw y in the outer face and connect it to all vertices of G so that we get a planar drawind of G^{*}. This proves the claim.

If G is outerplanar, let φ be a drawing of G such that all vertices are on the boundary of the outer face. Then we can draw y in the outer face and connect it to all vertices of G so that we get a planar drawina of G^{*}. This proves the claim.

Thus by Claim 1 and Kuratowski's Theorem, if G is outerplanar, then G^{*} does not contain subdivisions of K_{5} and $K_{3,3}$. But then $G=G^{*}-y$ cannot contain a subdivision of K_{4} or $K_{2,3}$.

On the other hand, by the same claim and the same theorem, if G is not outerplanar, then G^{*} contains a subdivision of K_{5} or of $K_{3,3}$. In the first case, $G=G^{*}-y$ contains a subdivision of K_{4}. In the second case, it contains a subdivision of $K_{2,3}$. This proves Theorem 6.7.

On the other hand, by the same claim and the same theorem, if G is not outerplanar, then G^{*} contains a subdivision of K_{5} or of $K_{3,3}$. In the first case, $G=G^{*}-y$ contains a subdivision of K_{4}. In the second case, it contains a subdivision of $K_{2,3}$. This proves Theorem 6.7.

A simple graph is maximal planar if it is planar but adding any non-loop edge not parallel to any edge of G results in a nonplanar graph.

On the other hand, by the same claim and the same theorem, if G is not outerplanar, then G^{*} contains a subdivision of K_{5} or of $K_{3,3}$. In the first case, $G=G^{*}-y$ contains a subdivision of K_{4}. In the second case, it contains a subdivision of $K_{2,3}$. This proves Theorem 6.7.

A simple graph is maximal planar if it is planar but adding any non-loop edge not parallel to any edge of G results in a nonplanar graph.

A triangluation is a plane graph (G, φ) such that every face of it is a 3 -cycle.

On the other hand, by the same claim and the same theorem, if G is not outerplanar, then G^{*} contains a subdivision of K_{5} or of $K_{3,3}$. In the first case, $G=G^{*}-y$ contains a subdivision of K_{4}. In the second case, it contains a subdivision of $K_{2,3}$. This proves Theorem 6.7.

A simple graph is maximal planar if it is planar but adding any non-loop edge not parallel to any edge of G results in a nonplanar graph.

A triangluation is a plane graph (G, φ) such that every face of it is a 3 -cycle.

Theorem 6.8: Let $n \geq 3$. For a simple n-vertex plane graph (G, φ), TFAE:
(A) G has $3 n-6$ edges;
(B) (G, φ) is a triangulation;
(C) G is maximal planar.

Proof of Theorem 6.8:

$(\mathrm{A}) \Rightarrow(\mathrm{C})$. By Cor. 6.3 , a simple n-vertex planar graph cannot have $3 n-5$ edges. Thus (A) implies (C).

Proof of Theorem 6.8:

$(A) \Rightarrow(C)$. By Cor. 6.3, a simple n-vertex planar graph cannot have $3 n-5$ edges. Thus (A) implies (C).
$(\mathrm{B}) \Rightarrow(\mathrm{A})$. If (G, φ) is a triangulation, then $3|F(G, \varphi)|=2|E(G)|$. Plugging this into Euler's Formula, we get

$$
2=n-|E(G)|+\frac{2}{3}|E(G)|=n-\frac{1}{3}|E(G)|
$$

which is equivalent to $|E(G)|=3(n-2)=3 n-6$.

Proof of Theorem 6.8:

$(\mathrm{A}) \Rightarrow(\mathrm{C})$. By Cor. 6.3 , a simple n-vertex planar graph cannot have $3 n-5$ edges. Thus (A) implies (C).
$(\mathrm{B}) \Rightarrow(\mathrm{A})$. If (G, φ) is a triangulation, then $3|F(G, \varphi)|=2|E(G)|$. Plugging this into Euler's Formula, we get

$$
2=n-|E(G)|+\frac{2}{3}|E(G)|=n-\frac{1}{3}|E(G)|
$$

which is equivalent to $|E(G)|=3(n-2)=3 n-6$.
$(C) \Rightarrow(B)$. Let G be maximal planar and φ be a drawing of G.
As in the proof of Corollarv 6.3. G is 2-connected.

Finishing proof of Theorem 6.8

Since G is 2-connected, the boundary of each face is a cycle. Suppose the boundary of some face F_{1} of (G, φ) is a cycle $v_{1}, v_{2}, \ldots, v_{k}$ for some $k \geq 4$.

Finishing proof of Theorem 6.8

Since G is 2 -connected, the boundary of each face is a cycle. Suppose the boundary of some face F_{1} of (G, φ) is a cycle $v_{1}, v_{2}, \ldots, v_{k}$ for some $k \geq 4$.
Then we try to add the edge $v_{1} v_{3}$ inside F_{1}.

Finishing proof of Theorem 6.8

Since G is 2-connected, the boundary of each face is a cycle. Suppose the boundary of some face F_{1} of (G, φ) is a cycle $v_{1}, v_{2}, \ldots, v_{k}$ for some $k \geq 4$.
Then we try to add the edge $v_{1} v_{3}$ inside F_{1}.

The only possibility that we fail is that G already has edge $v_{1} v_{3}$. In this case, G has no edge $v_{2} v_{4}$, and we can add this edge inside F_{1}, a contradiction to the maximality of G.

Main results in Chapter 6:

1. Euler's Formula.
2. Kuratowski's Theorem.
