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A simple graph is maximal planar if it is planar but adding any
non-loop edge not parallel to any edge of G results in a
nonplanar graph.

A triangluation is a plane graph (G, φ) such that every face of it
is a 3-cycle.

Theorem 6.8: Let n ≥ 3. For a simple n-vertex plane graph
(G, φ), TFAE:
(A) G has 3n − 6 edges;
(B) (G, φ) is a triangulation;
(C) G is maximal planar.

Proof of Theorem 6.8:
(A) ⇒ (C). By Cor. 6.3, a simple n-vertex planar graph cannot
have 3n − 5 edges. Thus (A) implies (C).
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(B) ⇒ (A). If (G, φ) is a triangulation, then 3|F (G, φ)| = 2|E(G)|.
Plugging this into Euler’s Formula, we get

2 = n − |E(G)|+ 2
3
|E(G)| = n − 1

3
|E(G)|,

which is equivalent to |E(G)| = 3(n − 2) = 3n − 6.

(C) ⇒ (B). Let G be maximal planar and φ be a drawing of G.
As in the proof of Corollary 6.3, G is 2-connected.
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Finishing proof of Theorem 6.8
Since G is 2-connected, the boundary of each face is a cycle.
Suppose the boundary of some face F1 of (G, φ) is a cycle
v1, v2, . . . , vk for some k ≥ 4.

Then we try to add the edge v1v3 inside F1.

The only possibility that we fail is that G already has edge v1v3.
In this case, G has no edge v2v4, and we can add this edge
inside F1, a contradiction to the maximality of G.
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Main results in Chapter 6:
1. Euler’s Formula.

2. Kuratowski’s Theorem.



Definitions
A (proper) k -coloring of the vertices of a graph G is a mapping
f : V (G) → {1, . . . , k} such that

f (x) ̸= f (y) ∀ e ∈ E(G) with ends x and y . (1)

Observations: 1. If G has a loop, then it has no k -coloring for
any k .
2. Multiple edges do not affect coloring. So below we consider
colorings only simple graphs.



Observation: Given a k -coloring f of the vertices of a graph G,
for each i ∈ {1, . . . , k}, f−1(i) is an independent set. We call
f−1(i) a color class of f .
So, a k -coloring of the vertices of a graph G is a partition of
V (G) into k independent sets.

The larger is k , the more freedom we have. We always can
color the vertices of an n-vertex graphs with n colors.
The chromatic number, χ(G), of a graph G is the minimum
positive integer k s.t. G has a k -coloring.

G is k -colorable if χ(G) ≤ k .

Question: Which graphs are 2-colorable?

Fact: For each k ≥ 3, the problem to check whether a graph G
is k -colorable is NP-complete.
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Examples and a simple fact
1. Complete graphs. 2. Cycles. 3. Petersen graph. 4. Wheels.

5. Consider the following 5 jobs: (a) Do an HW in Math 412, (b)
Workout on a treadmill, (c) Eat a lunch, (d) Watch an episode of
a TV series, (e) Clean the room.

The clique number, ω(G), is the size of a largest clique
(complete subgraph) in G.

Proposition 5.1. For every graph G,

χ(G) ≥ ω(G) and χ(G) ≥ |V (G)|
α(G)

. (2)

Proof. All vertices in a clique of size ω(G) must have different
colors. This proves χ(G) ≥ ω(G).
With any color, we can color at most α(G) vertices. This proves
χ(G) ≥ |V (G)|/α(G).
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Four Color Theorem

The Four Color Theorem was proved (using computer
verification) at the University of Illinois, in Altgeld Hall by K.
Appel and W. Haken in 1976.
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Greedy coloring
A greedy coloring of a graph G is defined as follows.
1. Order the vertices of G as, say v1, . . . , vn.

2. For i = 1,2, . . . ,n color vi with the smallest positive integer
distinct from the colors of the neighbors vj of vi with j < i .

Proposition 5.2. For every graph G, χ(G) ≤ 1 +∆(G).

Proof. Apply greedy coloring to G. At every Step i , at most
∆(G) colors are forbidden for vi . So, there always is a color in
{1, . . . ,1 +∆(G)} available to color vi .

On the other hand, on the next slide we will see an example of
a tree T4 with an ordering of its vertices s.t. the greedy coloring
of T4 w.r.t. this ordering needs 4 colors. It is clear how to
generalize this to a tree that will need a 1000 colors for its
greedy coloring.



Greedy coloring
A greedy coloring of a graph G is defined as follows.
1. Order the vertices of G as, say v1, . . . , vn.

2. For i = 1,2, . . . ,n color vi with the smallest positive integer
distinct from the colors of the neighbors vj of vi with j < i .

Proposition 5.2. For every graph G, χ(G) ≤ 1 +∆(G).

Proof. Apply greedy coloring to G. At every Step i , at most
∆(G) colors are forbidden for vi . So, there always is a color in
{1, . . . ,1 +∆(G)} available to color vi .

On the other hand, on the next slide we will see an example of
a tree T4 with an ordering of its vertices s.t. the greedy coloring
of T4 w.r.t. this ordering needs 4 colors. It is clear how to
generalize this to a tree that will need a 1000 colors for its
greedy coloring.



Greedy coloring
A greedy coloring of a graph G is defined as follows.
1. Order the vertices of G as, say v1, . . . , vn.

2. For i = 1,2, . . . ,n color vi with the smallest positive integer
distinct from the colors of the neighbors vj of vi with j < i .

Proposition 5.2. For every graph G, χ(G) ≤ 1 +∆(G).

Proof. Apply greedy coloring to G. At every Step i , at most
∆(G) colors are forbidden for vi . So, there always is a color in
{1, . . . ,1 +∆(G)} available to color vi .

On the other hand, on the next slide we will see an example of
a tree T4 with an ordering of its vertices s.t. the greedy coloring
of T4 w.r.t. this ordering needs 4 colors. It is clear how to
generalize this to a tree that will need a 1000 colors for its
greedy coloring.



Greedy coloring
A greedy coloring of a graph G is defined as follows.
1. Order the vertices of G as, say v1, . . . , vn.

2. For i = 1,2, . . . ,n color vi with the smallest positive integer
distinct from the colors of the neighbors vj of vi with j < i .

Proposition 5.2. For every graph G, χ(G) ≤ 1 +∆(G).

Proof. Apply greedy coloring to G. At every Step i , at most
∆(G) colors are forbidden for vi . So, there always is a color in
{1, . . . ,1 +∆(G)} available to color vi .

On the other hand, on the next slide we will see an example of
a tree T4 with an ordering of its vertices s.t. the greedy coloring
of T4 w.r.t. this ordering needs 4 colors. It is clear how to
generalize this to a tree that will need a 1000 colors for its
greedy coloring.



Greedy coloring
A greedy coloring of a graph G is defined as follows.
1. Order the vertices of G as, say v1, . . . , vn.

2. For i = 1,2, . . . ,n color vi with the smallest positive integer
distinct from the colors of the neighbors vj of vi with j < i .

Proposition 5.2. For every graph G, χ(G) ≤ 1 +∆(G).

Proof. Apply greedy coloring to G. At every Step i , at most
∆(G) colors are forbidden for vi . So, there always is a color in
{1, . . . ,1 +∆(G)} available to color vi .

On the other hand, on the next slide we will see an example of
a tree T4 with an ordering of its vertices s.t. the greedy coloring
of T4 w.r.t. this ordering needs 4 colors. It is clear how to
generalize this to a tree that will need a 1000 colors for its
greedy coloring.



Definition A. A graph G is d-degenerate if for every subgraph H
of G, δ(H) ≤ d .

Example 1: A graph G is 1-degenerate iff G is a forest.

Example 2: Every planar simple graph is 5-degenerate.

Definition B. A graph G is d-degenerate if its vertices can be
ordered v1, . . . , vn so that for each 1 < i ≤ n, vertex vi has at
most d neighbors in {v1, . . . , vi−1}.

Proposition 5.3. Definitions (A) and (B) are equivalent.

Proof: In the lecture.
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Proposition 5.4. Every d-degenerate graph is (d + 1)-colorable.

Proof: Use the ordering of vertices provided by Definition B,
and apply to it the greedy coloring.

Theorem 5.5. Every planar graph is 6-colorable.

Proof: Let G be a planar graph. By Example 2, G is
5-degenerate. So by Proposition 5.4, G is 6-colorable.

For k ≥ 1, a graph G is k -critical, if χ(G) = k , but for each
proper subgraph G′ of G,

χ(G′) ≤ k − 1.

Examples: (a) Complete graphs, (b) Odd cycles, (c) Odd
wheels, (d) Moser spindle.
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Theorem 5.6. Let k ≥ 3 and G be a k -critical graph. Then
(a) κ(G) ≥ 2;
(b) κ′(G) ≥ k − 1.
Moreover, for each k ≥ 3 there are infinitely many k -critical
graphs with connectivity exactly 2.

Proof of (a): Suppose our k -critical G is disconnected and G1 is
a component of G. Since G is k -critical, its proper subgraphs
G1 and G − V (G1) have chromatic number at most k − 1. Let f1
and f − 2 be their (k − 1)-colorings. Then f1 ∪ f2 is a
(k − 1)-coloring of G , a contradiction.

Suppose now G is connected and v is a cut vertex in G. Let G′

be a component of G − v , G1 = G − V (G′) and
G2 = G[V (G′) + v ]. Again, since G is k -critical, for i = 1,2, Gi
has a (k − 1)-coloring fi . We can rename the colors in f2 to
make f2(v) = f1(v). Then again, f1 ∪ f2 is a (k − 1)-coloring of
G , a contradiction.
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Proof of (b): Suppose κ′(G) ≤ k − 2. Then G has a vertex
partition (S,S) s.t. EG(S,S) = {xiyi : 1 ≤ i ≤ s}, where
s ≤ k − 2, {x1, . . . , xs} ⊂ S and {y1, . . . , ys} ⊂ S.
Note that xis do not need to be all distinct and yis do not need
to be all distinct.

Let G1 = G[S] and G2 = G[S]. Since G is k -critical, for i = 1,2,
Gi has a (k − 1)-coloring fi .
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We try to rename the colors of f2 so that f1(xi) ̸= f2(yi) for all
1 ≤ i ≤ s. There are (k − 1)! ways to rename these k − 1
colors. Each of the edges xiyi spoils the (k − 2)! cases where
f1(xi) = f2(yi).
Then the number of ways to rename the colors which are not
spoiled is at least

(k − 1)!− s((k − 2)!) = (k − 2)!((k − 1)− s) ≥ (k − 2)! > 0.

Hence we can rename the colors in f2 so that f1 ∪ f2 is a
(k − 1)-coloring of G, a contradiction.

Proof of the ”Moreover” part: We describe the Hájos
Construction that creates from two k -critical graphs a new
k -critical graph with connectivity exactly 2.
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1) Take two disjoint k -critical graphs G1 and G2.
2) Choose an edge x1y1 in G1 and an edge x2y2 in G2.
3) Delete the edges x1y1 and x2y2, glue x2 with x1 into a new
vertex x∗, add edge y1y2. Call new graph G∗.

By construction, set {x∗, y1} is separating in G∗. So κ(G∗) = 2.
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Now we show that G∗ is k -critical.
Suppose G∗ has a (k − 1)-coloring f . Sincef |V (G1) is NOT a
(k − 1)-coloring of G1, f (x∗) = f (y1). Similarly, f (x∗) = f (y2).
But then f (y1) = f (y2), a contradiction.

Consider G∗ − y1y2. Since G1 and G2 are k -critical, for i = 1,2,
Gi − xiyi has a (k − 1)-coloring f , and fi(yi) = fi(xi). Then after
permuting the colors in f2 so that f2(x2) = f1(x1), we get that
f1 ∪ f2 is a (k − 1)-coloring of G∗ − y1y2.

Finally, let uv be any other edge of G∗. By symmetry, we may
assume {u, v} ⊂ V (G1) (or one of them is x∗). Then G1 − uv
has a (k − 1)-coloring f1 and G2 − x2y2 has a (k − 1)-coloring
f2. After permuting the colors in f2 so that f2(x2) = f1(x1), we
get that f1 ∪ f2 is a (k − 1)-coloring of G∗ − uv .
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