Graph coloring. Part 1

Lecture 32

A simple graph is maximal planar if it is planar but adding any non-loop edge not parallel to any edge of G results in a nonplanar graph.

A simple graph is maximal planar if it is planar but adding any non-loop edge not parallel to any edge of G results in a nonplanar graph.

A triangluation is a plane graph (G, φ) such that every face of it is a 3-cycle.

A simple graph is maximal planar if it is planar but adding any non-loop edge not parallel to any edge of G results in a nonplanar graph.

A triangluation is a plane graph (G, φ) such that every face of it is a 3-cycle.

Theorem 6.8: Let $n \geq 3$. For a simple n-vertex plane graph (G, φ), TFAE:
(A) G has $3 n-6$ edges;
(B) (G, φ) is a triangulation;
(C) G is maximal planar.

A simple graph is maximal planar if it is planar but adding any non-loop edge not parallel to any edge of G results in a nonplanar graph.

A triangluation is a plane graph (G, φ) such that every face of it is a 3 -cycle.

Theorem 6.8: Let $n \geq 3$. For a simple n-vertex plane graph (G, φ), TFAE:
(A) G has $3 n-6$ edges;
(B) (G, φ) is a triangulation;
(C) G is maximal planar.

Proof of Theorem 6.8:
(A) \Rightarrow (C). By Cor. 6.3, a simple n-vertex planar graph cannot have $3 n-5$ edges. Thus (A) implies (C).
$(\mathrm{B}) \Rightarrow(\mathrm{A})$. If (G, φ) is a triangulation, then $3|F(G, \varphi)|=2|E(G)|$. Plugging this into Euler's Formula, we get

$$
2=n-|E(G)|+\frac{2}{3}|E(G)|=n-\frac{1}{3}|E(G)|
$$

which is equivalent to $|E(G)|=3(n-2)=3 n-6$.
$(\mathrm{B}) \Rightarrow(\mathrm{A})$. If (G, φ) is a triangulation, then $3|F(G, \varphi)|=2|E(G)|$. Plugging this into Euler's Formula, we get

$$
2=n-|E(G)|+\frac{2}{3}|E(G)|=n-\frac{1}{3}|E(G)|
$$

which is equivalent to $|E(G)|=3(n-2)=3 n-6$.
$(C) \Rightarrow(B)$. Let G be maximal planar and φ be a drawing of G. As in the proof of Corollary 6.3, G is 2 -connected.

Finishing proof of Theorem 6.8

Since G is 2-connected, the boundary of each face is a cycle. Suppose the boundary of some face F_{1} of (G, φ) is a cycle $v_{1}, v_{2}, \ldots, v_{k}$ for some $k \geq 4$.

Finishing proof of Theorem 6.8

Since G is 2 -connected, the boundary of each face is a cycle. Suppose the boundary of some face F_{1} of (G, φ) is a cycle $v_{1}, v_{2}, \ldots, v_{k}$ for some $k \geq 4$.
Then we try to add the edge $v_{1} v_{3}$ inside F_{1}.

Finishing proof of Theorem 6.8

Since G is 2-connected, the boundary of each face is a cycle. Suppose the boundary of some face F_{1} of (G, φ) is a cycle $v_{1}, v_{2}, \ldots, v_{k}$ for some $k \geq 4$.
Then we try to add the edge $v_{1} v_{3}$ inside F_{1}.

The only possibility that we fail is that G already has edge $v_{1} v_{3}$. In this case, G has no edge $v_{2} v_{4}$, and we can add this edge inside F_{1}, a contradiction to the maximality of G.

Main results in Chapter 6:

1. Euler's Formula.
2. Kuratowski's Theorem.

Definitions

A (proper) k-coloring of the vertices of a graph G is a mapping $f: V(G) \rightarrow\{1, \ldots, k\}$ such that

$$
\begin{equation*}
f(x) \neq f(y) \quad \forall e \in E(G) \text { with ends } x \text { and } y . \tag{1}
\end{equation*}
$$

Observations: 1. If G has a loop, then it has no k-coloring for any k.
2. Multiple edges do not affect coloring. So below we consider colorings only simple graphs.

Observation: Given a k-coloring f of the vertices of a graph G, for each $i \in\{1, \ldots, k\}, f^{-1}(i)$ is an independent set. We call $f^{-1}(i)$ a color class of f. So, a k-coloring of the vertices of a graph G is a partition of $V(G)$ into k independent sets.

Observation: Given a k-coloring f of the vertices of a graph G, for each $i \in\{1, \ldots, k\}, f^{-1}(i)$ is an independent set. We call $f^{-1}(i)$ a color class of f.
So, a k-coloring of the vertices of a graph G is a partition of $V(G)$ into k independent sets.

The larger is k, the more freedom we have. We always can color the vertices of an n-vertex graphs with n colors. The chromatic number, $\chi(G)$, of a graph G is the minimum positive integer k s.t. G has a k-coloring.
G is k-colorable if $\chi(G) \leq k$.
Question: Which graphs are 2-colorable?

Observation: Given a k-coloring f of the vertices of a graph G, for each $i \in\{1, \ldots, k\}, f^{-1}(i)$ is an independent set. We call $f^{-1}(i)$ a color class of f.
So, a k-coloring of the vertices of a graph G is a partition of $V(G)$ into k independent sets.

The larger is k, the more freedom we have. We always can color the vertices of an n-vertex graphs with n colors. The chromatic number, $\chi(G)$, of a graph G is the minimum positive integer k s.t. G has a k-coloring.
G is k-colorable if $\chi(G) \leq k$.
Question: Which graphs are 2-colorable?
Fact: For each $k \geq 3$, the problem to check whether a graph G is k-colorable is NP-complete.

Examples and a simple fact

1. Complete graphs. 2. Cycles. 3. Petersen graph. 4. Wheels.

Examples and a simple fact

1. Complete graphs. 2. Cycles. 3. Petersen graph. 4. Wheels.
2. Consider the following 5 jobs: (a) Do an HW in Math 412, (b) Workout on a treadmill, (c) Eat a lunch, (d) Watch an episode of a TV series, (e) Clean the room.

Examples and a simple fact

1. Complete graphs. 2. Cycles. 3. Petersen graph. 4. Wheels.
2. Consider the following 5 jobs: (a) Do an HW in Math 412, (b) Workout on a treadmill, (c) Eat a lunch, (d) Watch an episode of a TV series, (e) Clean the room.

The clique number, $\omega(G)$, is the size of a largest clique (complete subgraph) in G.

Examples and a simple fact

1. Complete graphs. 2. Cycles. 3. Petersen graph. 4. Wheels.
2. Consider the following 5 jobs: (a) Do an HW in Math 412, (b) Workout on a treadmill, (c) Eat a lunch, (d) Watch an episode of a TV series, (e) Clean the room.

The clique number, $\omega(G)$, is the size of a largest clique (complete subgraph) in G.

Proposition 5.1. For every graph G,

$$
\begin{equation*}
\chi(G) \geq \omega(G) \quad \text { and } \quad \chi(G) \geq \frac{|V(G)|}{\alpha(G)} \tag{2}
\end{equation*}
$$

Examples and a simple fact

1. Complete graphs. 2. Cycles. 3. Petersen graph. 4. Wheels.
2. Consider the following 5 jobs: (a) Do an HW in Math 412, (b) Workout on a treadmill, (c) Eat a lunch, (d) Watch an episode of a TV series, (e) Clean the room.

The clique number, $\omega(G)$, is the size of a largest clique (complete subgraph) in G.

Proposition 5.1. For every graph G,

$$
\begin{equation*}
\chi(G) \geq \omega(G) \quad \text { and } \quad \chi(G) \geq \frac{|V(G)|}{\alpha(G)} \tag{2}
\end{equation*}
$$

Proof. All vertices in a clique of size $\omega(G)$ must have different colors. This proves $\chi(G) \geq \omega(G)$.

Examples and a simple fact

1. Complete graphs. 2. Cycles. 3. Petersen graph. 4. Wheels.
2. Consider the following 5 jobs: (a) Do an HW in Math 412, (b) Workout on a treadmill, (c) Eat a lunch, (d) Watch an episode of a TV series, (e) Clean the room.

The clique number, $\omega(G)$, is the size of a largest clique (complete subgraph) in G.

Proposition 5.1. For every graph G,

$$
\begin{equation*}
\chi(G) \geq \omega(G) \quad \text { and } \quad \chi(G) \geq \frac{|V(G)|}{\alpha(G)} \tag{2}
\end{equation*}
$$

Proof. All vertices in a clique of size $\omega(G)$ must have different colors. This proves $\chi(G) \geq \omega(G)$.
With any color, we can color at most $\alpha(G)$ vertices. This proves $\chi(G) \geq|V(G)| / \alpha(G)$.

Four Color Theorem

Four Color Theorem

The Four Color Theorem was proved (using computer verification) at the University of Illinois, in Altgeld Hall by K. Appel and W. Haken in 1976.

Greedy coloring

A greedy coloring of a graph G is defined as follows.

1. Order the vertices of G as, say v_{1}, \ldots, v_{n}.

Greedy coloring

A greedy coloring of a graph G is defined as follows.

1. Order the vertices of G as, say v_{1}, \ldots, v_{n}.
2. For $i=1,2, \ldots, n$ color v_{i} with the smallest positive integer distinct from the colors of the neighbors v_{j} of v_{i} with $j<i$.

Greedy coloring

A greedy coloring of a graph G is defined as follows.

1. Order the vertices of G as, say v_{1}, \ldots, v_{n}.
2. For $i=1,2, \ldots, n$ color v_{i} with the smallest positive integer distinct from the colors of the neighbors v_{j} of v_{i} with $j<i$.

Proposition 5.2. For every graph $G, \chi(G) \leq 1+\Delta(G)$.

Greedy coloring

A greedy coloring of a graph G is defined as follows.

1. Order the vertices of G as, say v_{1}, \ldots, v_{n}.
2. For $i=1,2, \ldots, n$ color v_{i} with the smallest positive integer distinct from the colors of the neighbors v_{j} of v_{i} with $j<i$.

Proposition 5.2. For every graph $G, \chi(G) \leq 1+\Delta(G)$.
Proof. Apply greedy coloring to G. At every Step i, at most $\Delta(G)$ colors are forbidden for v_{i}. So, there always is a color in $\{1, \ldots, 1+\Delta(G)\}$ available to color v_{i}.

Greedy coloring

A greedy coloring of a graph G is defined as follows.

1. Order the vertices of G as, say v_{1}, \ldots, v_{n}.
2. For $i=1,2, \ldots, n$ color v_{i} with the smallest positive integer distinct from the colors of the neighbors v_{j} of v_{i} with $j<i$.

Proposition 5.2. For every graph $G, \chi(G) \leq 1+\Delta(G)$.
Proof. Apply greedy coloring to G. At every Step i, at most $\Delta(G)$ colors are forbidden for v_{i}. So, there always is a color in $\{1, \ldots, 1+\Delta(G)\}$ available to color v_{i}.

On the other hand, on the next slide we will see an example of a tree T_{4} with an ordering of its vertices s.t. the greedy coloring of T_{4} w.r.t. this ordering needs 4 colors. It is clear how to generalize this to a tree that will need a 1000 colors for its greedy coloring.

Definition A. A graph G is d-degenerate if for every subgraph H of $G, \delta(H) \leq d$.

Example 1: A graph G is 1 -degenerate iff G is a forest.

Definition A. A graph G is d-degenerate if for every subgraph H of $G, \delta(H) \leq d$.

Example 1: A graph G is 1 -degenerate iff G is a forest.
Example 2: Every planar simple graph is 5-degenerate.

Definition A. A graph G is d-degenerate if for every subgraph H of $G, \delta(H) \leq d$.

Example 1: A graph G is 1-degenerate iff G is a forest.
Example 2: Every planar simple graph is 5-degenerate.
Definition B. A graph G is d-degenerate if its vertices can be ordered v_{1}, \ldots, v_{n} so that for each $1<i \leq n$, vertex v_{i} has at most d neighbors in $\left\{v_{1}, \ldots, v_{i-1}\right\}$.

Definition A. A graph G is d-degenerate if for every subgraph H of $G, \delta(H) \leq d$.

Example 1: A graph G is 1 -degenerate iff G is a forest.
Example 2: Every planar simple graph is 5-degenerate.
Definition B. A graph G is d-degenerate if its vertices can be ordered v_{1}, \ldots, v_{n} so that for each $1<i \leq n$, vertex v_{i} has at most d neighbors in $\left\{v_{1}, \ldots, v_{i-1}\right\}$.

Proposition 5.3. Definitions (A) and (B) are equivalent.
Proof: In the lecture.

Proposition 5.4. Every d-degenerate graph is $(d+1)$-colorable.
Proof: Use the ordering of vertices provided by Definition B, and apply to it the greedy coloring.

Proposition 5.4. Every d-degenerate graph is $(d+1)$-colorable.
Proof: Use the ordering of vertices provided by Definition B, and apply to it the greedy coloring.

Theorem 5.5. Every planar graph is 6-colorable.
Proof: Let G be a planar graph. By Example 2, G is 5-degenerate. So by Proposition 5.4, G is 6 -colorable.

Proposition 5.4. Every d-degenerate graph is $(d+1)$-colorable.
Proof: Use the ordering of vertices provided by Definition B, and apply to it the greedy coloring.

Theorem 5.5. Every planar graph is 6-colorable.
Proof: Let G be a planar graph. By Example 2, G is 5-degenerate. So by Proposition 5.4, G is 6 -colorable.

For $k \geq 1$, a graph G is k-critical, if $\chi(G)=k$, but for each proper subgraph G^{\prime} of G,

$$
\chi\left(G^{\prime}\right) \leq k-1
$$

Proposition 5.4. Every d-degenerate graph is $(d+1)$-colorable.
Proof: Use the ordering of vertices provided by Definition B, and apply to it the greedy coloring.

Theorem 5.5. Every planar graph is 6-colorable.
Proof: Let G be a planar graph. By Example 2, G is 5 -degenerate. So by Proposition 5.4, G is 6 -colorable.

For $k \geq 1$, a graph G is k-critical, if $\chi(G)=k$, but for each proper subgraph G^{\prime} of G,

$$
\chi\left(G^{\prime}\right) \leq k-1
$$

Examples: (a) Complete graphs, (b) Odd cycles, (c) Odd wheels, (d) Moser spindle.

Theorem 5.6. Let $k \geq 3$ and G be a k-critical graph. Then (a) $\kappa(G) \geq 2$;
(b) $\kappa^{\prime}(G) \geq k-1$.

Moreover, for each $k \geq 3$ there are infinitely many k-critical graphs with connectivity exactly 2.

Theorem 5.6. Let $k \geq 3$ and G be a k-critical graph. Then (a) $\kappa(G) \geq 2$;
(b) $\kappa^{\prime}(G) \geq k-1$.

Moreover, for each $k \geq 3$ there are infinitely many k-critical graphs with connectivity exactly 2.

Proof of (a): Suppose our k-critical G is disconnected and G_{1} is a component of G. Since G is k-critical, its proper subgraphs G_{1} and $G-V\left(G_{1}\right)$ have chromatic number at most $k-1$. Let f_{1} and $f-2$ be their $(k-1)$-colorings. Then $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of G, a contradiction.

Theorem 5.6. Let $k \geq 3$ and G be a k-critical graph. Then
(a) $\kappa(G) \geq 2$;
(b) $\kappa^{\prime}(G) \geq k-1$.

Moreover, for each $k \geq 3$ there are infinitely many k-critical graphs with connectivity exactly 2.

Proof of (a): Suppose our k-critical G is disconnected and G_{1} is a component of G. Since G is k-critical, its proper subgraphs G_{1} and $G-V\left(G_{1}\right)$ have chromatic number at most $k-1$. Let f_{1} and $f-2$ be their $(k-1)$-colorings. Then $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of G, a contradiction.

Suppose now G is connected and v is a cut vertex in G. Let G^{\prime} be a component of $G-v, G_{1}=G-V\left(G^{\prime}\right)$ and $G_{2}=G\left[V\left(G^{\prime}\right)+v\right]$. Again, since G is k-critical, for $i=1,2, G_{i}$ has a $(k-1)$-coloring f_{i}. We can rename the colors in f_{2} to make $f_{2}(v)=f_{1}(v)$. Then again, $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of G, a contradiction.

Proof of (b) : Suppose $\kappa^{\prime}(G) \leq k-2$. Then G has a vertex partition (S, \bar{S}) s.t. $E_{G}(S, \bar{S})=\left\{x_{i} y_{i}: 1 \leq i \leq s\right\}$, where $s \leq k-2,\left\{x_{1}, \ldots, x_{s}\right\} \subset S$ and $\left\{y_{1}, \ldots, y_{s}\right\} \subset \bar{S}$.
Note that $x_{i} \mathrm{~s}$ do not need to be all distinct and $y_{i} \mathrm{~s}$ do not need to be all distinct.

Proof of (b) : Suppose $\kappa^{\prime}(G) \leq k-2$. Then G has a vertex partition (S, \bar{S}) s.t. $E_{G}(S, \bar{S})=\left\{x_{i} y_{i}: 1 \leq i \leq s\right\}$, where $s \leq k-2,\left\{x_{1}, \ldots, x_{s}\right\} \subset S$ and $\left\{y_{1}, \ldots, y_{s}\right\} \subset \bar{S}$.
Note that $x_{i} \mathrm{~s}$ do not need to be all distinct and $y_{i} s$ do not need to be all distinct.

Let $G_{1}=G[S]$ and $G_{2}=G[\bar{S}]$. Since G is k-critical, for $i=1,2$, G_{i} has a $(k-1)$-coloring f_{i}.

We try to rename the colors of f_{2} so that $f_{1}\left(x_{i}\right) \neq f_{2}\left(y_{i}\right)$ for all $1 \leq i \leq s$. There are $(k-1)$! ways to rename these $k-1$ colors. Each of the edges $x_{i} y_{i}$ spoils the $(k-2)$! cases where $f_{1}\left(x_{i}\right)=f_{2}\left(y_{i}\right)$.
Then the number of ways to rename the colors which are not spoiled is at least

$$
(k-1)!-s((k-2)!)=(k-2)!((k-1)-s) \geq(k-2)!>0
$$

Hence we can rename the colors in f_{2} so that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of G, a contradiction.

We try to rename the colors of f_{2} so that $f_{1}\left(x_{i}\right) \neq f_{2}\left(y_{i}\right)$ for all $1 \leq i \leq s$. There are $(k-1)$! ways to rename these $k-1$ colors. Each of the edges $x_{i} y_{i}$ spoils the ($k-2$)! cases where $f_{1}\left(x_{i}\right)=f_{2}\left(y_{i}\right)$.
Then the number of ways to rename the colors which are not spoiled is at least

$$
(k-1)!-s((k-2)!)=(k-2)!((k-1)-s) \geq(k-2)!>0 .
$$

Hence we can rename the colors in f_{2} so that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of G, a contradiction.

Proof of the "Moreover" part: We describe the Hájos
Construction that creates from two k-critical graphs a new k-critical graph with connectivity exactly 2.

1) Take two disjoint k-critical graphs G_{1} and G_{2}.
2) Choose an edge $x_{1} y_{1}$ in G_{1} and an edge $x_{2} y_{2}$ in G_{2}.
3) Delete the edges $x_{1} y_{1}$ and $x_{2} y_{2}$, glue x_{2} with x_{1} into a new vertex x^{*}, add edge $y_{1} y_{2}$. Call new graph G^{*}.
4) Take two disjoint k-critical graphs G_{1} and G_{2}.
5) Choose an edge $x_{1} y_{1}$ in G_{1} and an edge $x_{2} y_{2}$ in G_{2}.
6) Delete the edges $x_{1} y_{1}$ and $x_{2} y_{2}$, glue x_{2} with x_{1} into a new vertex x^{*}, add edge $y_{1} y_{2}$. Call new graph G^{*}.

7) Take two disjoint k-critical graphs G_{1} and G_{2}.
8) Choose an edge $x_{1} y_{1}$ in G_{1} and an edge $x_{2} y_{2}$ in G_{2}.
9) Delete the edges $x_{1} y_{1}$ and $x_{2} y_{2}$, glue x_{2} with x_{1} into a new vertex x^{*}, add edge $y_{1} y_{2}$. Call new graph G^{*}.

By construction, set $\left\{x^{*}, y_{1}\right\}$ is separating in G^{*}. So $\kappa\left(G^{*}\right)=2$.

Now we show that G^{*} is k-critical.
Suppose G^{*} has a $(k-1)$-coloring f. Since $\left.f\right|_{v\left(G_{1}\right)}$ is NOT a $(k-1)$-coloring of $G_{1}, f\left(x^{*}\right)=f\left(y_{1}\right)$. Similarly, $f\left(x^{*}\right)=f\left(y_{2}\right)$. But then $f\left(y_{1}\right)=f\left(y_{2}\right)$, a contradiction.

Now we show that G^{*} is k-critical.
Suppose G^{*} has a $(k-1)$-coloring f. Since $\left.f\right|_{v\left(G_{1}\right)}$ is NOT a $(k-1)$-coloring of $G_{1}, f\left(x^{*}\right)=f\left(y_{1}\right)$. Similarly, $f\left(x^{*}\right)=f\left(y_{2}\right)$. But then $f\left(y_{1}\right)=f\left(y_{2}\right)$, a contradiction.

Consider $G^{*}-y_{1} y_{2}$. Since G_{1} and G_{2} are k-critical, for $i=1,2$, $G_{i}-x_{i} y_{i}$ has a $(k-1)$-coloring f, and $f_{i}\left(y_{i}\right)=f_{i}\left(x_{i}\right)$. Then after permuting the colors in f_{2} so that $f_{2}\left(x_{2}\right)=f_{1}\left(x_{1}\right)$, we get that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of $G^{*}-y_{1} y_{2}$.

Now we show that G^{*} is k-critical.
Suppose G^{*} has a $(k-1)$-coloring f. Since $\left.f\right|_{v\left(G_{1}\right)}$ is NOT a $(k-1)$-coloring of $G_{1}, f\left(x^{*}\right)=f\left(y_{1}\right)$. Similarly, $f\left(x^{*}\right)=f\left(y_{2}\right)$. But then $f\left(y_{1}\right)=f\left(y_{2}\right)$, a contradiction.

Consider $G^{*}-y_{1} y_{2}$. Since G_{1} and G_{2} are k-critical, for $i=1,2$, $G_{i}-x_{i} y_{i}$ has a $(k-1)$-coloring f, and $f_{i}\left(y_{i}\right)=f_{i}\left(x_{i}\right)$. Then after permuting the colors in f_{2} so that $f_{2}\left(x_{2}\right)=f_{1}\left(x_{1}\right)$, we get that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of $G^{*}-y_{1} y_{2}$.

Finally, let $u v$ be any other edge of G^{*}. By symmetry, we may assume $\{u, v\} \subset V\left(G_{1}\right)$ (or one of them is x^{*}). Then $G_{1}-u v$ has a $(k-1)$-coloring f_{1} and $G_{2}-x_{2} y_{2}$ has a $(k-1)$-coloring f_{2}. After permuting the colors in f_{2} so that $f_{2}\left(x_{2}\right)=f_{1}\left(x_{1}\right)$, we get that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of $G^{*}-u v$.

