Graph coloring. Part 2

Lecture 33



Definition A. A graph G is d-degenerate if for every subgraph H
of G, §(H) < d.

Example 1: A graph G is 1-degenerate iff G is a forest.
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Definition A. A graph G is d-degenerate if for every subgraph H
of G, §(H) < d.

Example 1: A graph G is 1-degenerate iff G is a forest.
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Definition B. A graph G is d-degenerate if its vertices can be
ordered vy, ..., v, so that for each 1 < i < n, vertex v; has at
most d neighbors in {vy,...,v; 1}.

Proposition 5.3. Definitions (A) and (B) are equivalent.

Proof: In the lecture.
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and apply to it the greedy coloring.
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Proposition 5.4. Every d-degenerate graph is (d + 1)-colorable.

Proof: Use the ordering of vertices provided by Definition B,
and apply to it the greedy coloring.

Theorem 5.5. Every planar graph is 6-colorable.

Proof: Let G be a planar graph. By Example 2, G is
5-degenerate. So by Proposition 5.4, G is 6-colorable.

For k > 1, a graph Gis k-critical, if x(G) = k, but for each
proper subgraph G’ of G,

x(G)<k-1.

Examples: (a) Complete graphs, (b) Odd cycles, (c) Odd
wheels, (d) Moser spindle.



Theorem 5.6. Let k > 3 and G be a k-critical graph. Then
(a) 5(G) > 2;

(b) ' (G) > k — 1.

Moreover, for each k > 3 there are infinitely many k-critical
graphs with connectivity exactly 2.
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Proof of (a): Suppose our k-critical G is disconnected and Gj is
a component of G. Since G is k-critical, its proper subgraphs
Gi and G — V(Gy) have chromatic number at most kK — 1. Let f;
and f — 2 be their (k — 1)-colorings. Then fiy Uy is a

(k — 1)-coloring of G, a contradiction.



Theorem 5.6. Let k > 3 and G be a k-critical graph. Then
(@) £(G) = 2;

(b) ' (G) > k — 1.

Moreover, for each k > 3 there are infinitely many k-critical
graphs with connectivity exactly 2.

Proof of (a): Suppose our k-critical G is disconnected and Gj is
a component of G. Since G is k-critical, its proper subgraphs
Gi and G — V(Gy) have chromatic number at most kK — 1. Let f;
and f — 2 be their (k — 1)-colorings. Then fiy Uy is a

(k — 1)-coloring of G, a contradiction.

Suppose now G is connected and v is a cut vertex in G. Let G’
be a componentof G- v, Gy = G- V(G') and

Go = G[V(G') + v]. Again, since G is k-critical, fori = 1,2, G;
has a (k — 1)-coloring f;. We can rename the colors in f, to
make f>(v) = f;(v). Then again, f; U f> is a (k — 1)-coloring of
G, a contradiction.



Proof of (b): Suppose «'(G) < k — 2. Then G has a vertex
partition (S, S) s.t. Eg(S,S) = {xy;:1 <i< s}, where
s<k—-2,{xq,....,xs} c Sand {y1,...,ys} C S.

Note that x;s do not need to be all distinct and y;s do not need
to be all distinct.



Proof of (b): Suppose «'(G) < k — 2. Then G has a vertex
partition (S, S) s.t. Eg(S,S) = {xy;:1 <i< s}, where
s<k—-2,{xq,....,xs} c Sand {y1,...,ys} C S.

Note that x;s do not need to be all distinct and y;s do not need
to be all distinct.

Let G; = G[S] and G, = GIS]. Since G is k-critical, for i = 1,2,
G; has a (k — 1)-coloring f;.




We try to rename the colors of £, so that f;(x;) # f2(y;) for all

1 <i<s. There are (k — 1)! ways to rename these k — 1
colors. Each of the edges x;y; spoils the (k — 2)! cases where
fi(x7) = R2(yi)-

Then the number of ways to rename the colors which are not
spoiled is at least

(k— 1)1 —s((k—2)1) = (k—2)/((k — 1) — 8) > (k — 2)! > 0.

Hence we can rename the colors in f, sothat fy U isa
(k — 1)-coloring of G, a contradiction.



We try to rename the colors of £, so that f;(x;) # f2(y;) for all

1 <i<s. There are (k — 1)! ways to rename these k — 1
colors. Each of the edges x;y; spoils the (k — 2)! cases where
fi(xi) = L(¥i)-

Then the number of ways to rename the colors which are not
spoiled is at least

(k— 1)1 —s((k—2)1) = (k—2)/((k — 1) — 8) > (k — 2)! > 0.

Hence we can rename the colors in f, sothat fy U isa
(k — 1)-coloring of G, a contradiction.

Proof of the "Moreover” part: We describe the Hajos
Construction that creates from two k-critical graphs a new
k-critical graph with connectivity exactly 2.



1) Take two disjoint k-critical graphs Gy and Go.

2) Choose an edge xqy1 in Gy and an edge xo )0 in Go.

3) Delete the edges x; 4 and xo)», glue x> with xq into a new
vertex x*, add edge y; y». Call new graph G*.
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1) Take two disjoint k-critical graphs Gy and Go.

2) Choose an edge xqy1 in Gy and an edge xo )0 in Go.

3) Delete the edges x; 4 and xo)», glue x> with xq into a new
vertex x*, add edge y; y». Call new graph G*.
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By construction, set {x*, y1} is separating in G*. So x(G*) = 2



Now we show that G* is k-critical.

Suppose G* has a (k — 1)-coloring f. Sincef |y(g,) is NOT a
(k — 1)-coloring of Gy, f(x*) = f(y1). Similarly, f(x*) = f(y2).
But then 7(y4) = f()2), a contradiction.
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Suppose G* has a (k — 1)-coloring f. Sincef |y(g,) is NOT a
(k — 1)-coloring of Gy, f(x*) = f(y1). Similarly, f(x*) = f(y2).
But then 7(y4) = f()2), a contradiction.

Consider G* — y1y». Since Gy and G» are k-critical, for i = 1, 2,
G; — xjy; has a (k — 1)-coloring f, and fi(y;) = fi(x;). Then after
permuting the colors in f, so that f>(x2) = f;(x1), we get that
fiUfisa (k — 1)-coloring of G* — y1y».



Now we show that G* is k-critical.

Suppose G* has a (k — 1)-coloring f. Sincef |y(g,) is NOT a
(k — 1)-coloring of Gy, f(x*) = f(y1). Similarly, f(x*) = f(y2).
But then 7(y4) = f()2), a contradiction.

Consider G* — y1y». Since Gy and G» are k-critical, for i = 1, 2,
G; — xjy; has a (k — 1)-coloring f, and fi(y;) = fi(x;). Then after
permuting the colors in f, so that f>(x2) = f;(x1), we get that
fiUfisa (k — 1)-coloring of G* — y1y».

Finally, let uv be any other edge of G*. By symmetry, we may
assume {u, v} C V(Gj) (or one of them is x*). Then Gy — uv
has a (k — 1)-coloring f; and G> — x»)» has a (k — 1)-coloring
f>. After permuting the colors in £, so that f>(x2) = fi(x1), we
getthat fy Uf is a (k — 1)-coloring of G* — uv.



Definitions

Mycielski's Construction: M3 = Cs. Suppose My is a
triangle-free graph with x(My) = k and

V(Mk) = V= {V1,..., Vnk}. Let V, = {U1,..., Unk}. Then
V(Mii1) = Vie U Vi U{w}, M4 [Vi] = Mi, Ny, ,,(w) = Vi and
foreach 1 <j < ng, Ny, (U;) = Ny, (vj) U {w}.
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Theorem 5.7: For every k > 3, My is triangle-free and
(M) > k.

Proof. For k = 3 this is trivial.
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set of the vertices in Vj, colored with ky. We will recolor them:
foreach 1 <j < s, recolor 7 with f(u,-l.). Then color kg is not
used in the new coloring f’ of Mj.



Theorem 5.7: For every k > 3, My is triangle-free and

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all k < kg, but x (M, 11) = ko.
Let f be a kp-coloring of My,1. We may assume that f(w) = ko.

Then color ky is not used on V,’(O. Let W= {v,,..., v} bethe
set of the vertices in Vj, colored with ky. We will recolor them:
foreach 1 <j < s, recolor 7 with f(u,-l.). Then color kg is not
used in the new coloring f’ of Mj.

We claim that

f'(v;) # f'(v;) for each edge v;v; € E(My,). (1)



Indeed, suppose f'(v;) = '(v;). If f(v;) # ko and f(v;) # ko, then
the colors of v; and v; did not change, but 7(v;) # f(v;), a
contradiction. If f(v;) = ko = f(v;), then v; and v; cannot be

adjacent.
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Indeed, suppose f'(v;) = '(v;). If f(v;) # ko and f(v;) # ko, then
the colors of v; and v; did not change, but 7(v;) # f(v;), a
contradiction. If f(v;) = ko = f(v;), then v; and v; cannot be
adjacent.

So, we may assume f(v;) = kg and f(v;) # ko. This means
f(uj) = f(v}). But u;v; € E(My, 1), a contradiction.

This shows that the difference y(G) — w(G) and the ratio %

can be arbitrarily large.
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