
Graph coloring. Part 2

Lecture 33



Definition A. A graph G is d-degenerate if for every subgraph H
of G, δ(H) ≤ d .

Example 1: A graph G is 1-degenerate iff G is a forest.

Example 2: Every planar simple graph is 5-degenerate.

Definition B. A graph G is d-degenerate if its vertices can be
ordered v1, . . . , vn so that for each 1 < i ≤ n, vertex vi has at
most d neighbors in {v1, . . . , vi−1}.

Proposition 5.3. Definitions (A) and (B) are equivalent.

Proof: In the lecture.
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Proposition 5.4. Every d-degenerate graph is (d + 1)-colorable.

Proof: Use the ordering of vertices provided by Definition B,
and apply to it the greedy coloring.

Theorem 5.5. Every planar graph is 6-colorable.

Proof: Let G be a planar graph. By Example 2, G is
5-degenerate. So by Proposition 5.4, G is 6-colorable.

For k ≥ 1, a graph G is k -critical, if χ(G) = k , but for each
proper subgraph G′ of G,

χ(G′) ≤ k − 1.

Examples: (a) Complete graphs, (b) Odd cycles, (c) Odd
wheels, (d) Moser spindle.
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Theorem 5.6. Let k ≥ 3 and G be a k -critical graph. Then
(a) κ(G) ≥ 2;
(b) κ′(G) ≥ k − 1.
Moreover, for each k ≥ 3 there are infinitely many k -critical
graphs with connectivity exactly 2.

Proof of (a): Suppose our k -critical G is disconnected and G1 is
a component of G. Since G is k -critical, its proper subgraphs
G1 and G − V (G1) have chromatic number at most k − 1. Let f1
and f − 2 be their (k − 1)-colorings. Then f1 ∪ f2 is a
(k − 1)-coloring of G , a contradiction.

Suppose now G is connected and v is a cut vertex in G. Let G′

be a component of G − v , G1 = G − V (G′) and
G2 = G[V (G′) + v ]. Again, since G is k -critical, for i = 1,2, Gi
has a (k − 1)-coloring fi . We can rename the colors in f2 to
make f2(v) = f1(v). Then again, f1 ∪ f2 is a (k − 1)-coloring of
G , a contradiction.
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Proof of (b): Suppose κ′(G) ≤ k − 2. Then G has a vertex
partition (S,S) s.t. EG(S,S) = {xiyi : 1 ≤ i ≤ s}, where
s ≤ k − 2, {x1, . . . , xs} ⊂ S and {y1, . . . , ys} ⊂ S.
Note that xis do not need to be all distinct and yis do not need
to be all distinct.

Let G1 = G[S] and G2 = G[S]. Since G is k -critical, for i = 1,2,
Gi has a (k − 1)-coloring fi .
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We try to rename the colors of f2 so that f1(xi) ̸= f2(yi) for all
1 ≤ i ≤ s. There are (k − 1)! ways to rename these k − 1
colors. Each of the edges xiyi spoils the (k − 2)! cases where
f1(xi) = f2(yi).
Then the number of ways to rename the colors which are not
spoiled is at least

(k − 1)!− s((k − 2)!) = (k − 2)!((k − 1)− s) ≥ (k − 2)! > 0.

Hence we can rename the colors in f2 so that f1 ∪ f2 is a
(k − 1)-coloring of G, a contradiction.

Proof of the ”Moreover” part: We describe the Hájos
Construction that creates from two k -critical graphs a new
k -critical graph with connectivity exactly 2.
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1) Take two disjoint k -critical graphs G1 and G2.
2) Choose an edge x1y1 in G1 and an edge x2y2 in G2.
3) Delete the edges x1y1 and x2y2, glue x2 with x1 into a new
vertex x∗, add edge y1y2. Call new graph G∗.

By construction, set {x∗, y1} is separating in G∗. So κ(G∗) = 2.
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Now we show that G∗ is k -critical.
Suppose G∗ has a (k − 1)-coloring f . Sincef |V (G1) is NOT a
(k − 1)-coloring of G1, f (x∗) = f (y1). Similarly, f (x∗) = f (y2).
But then f (y1) = f (y2), a contradiction.

Consider G∗ − y1y2. Since G1 and G2 are k -critical, for i = 1,2,
Gi − xiyi has a (k − 1)-coloring f , and fi(yi) = fi(xi). Then after
permuting the colors in f2 so that f2(x2) = f1(x1), we get that
f1 ∪ f2 is a (k − 1)-coloring of G∗ − y1y2.

Finally, let uv be any other edge of G∗. By symmetry, we may
assume {u, v} ⊂ V (G1) (or one of them is x∗). Then G1 − uv
has a (k − 1)-coloring f1 and G2 − x2y2 has a (k − 1)-coloring
f2. After permuting the colors in f2 so that f2(x2) = f1(x1), we
get that f1 ∪ f2 is a (k − 1)-coloring of G∗ − uv .
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Definitions

Mycielski’s Construction: M3 = C5. Suppose Mk is a
triangle-free graph with χ(Mk ) = k and
V (Mk ) = Vk = {v1, ..., vnk}. Let V ′

k = {u1, ...,unk}. Then
V (Mk+1) = Vk ∪ V ′

k ∪ {w}, Mk+1[Vk ] = Mk , NMk+1(w) = V ′
k and

for each 1 ≤ j ≤ nk , NMk+1(uj) = NMk (vj) ∪ {w}.
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Theorem 5.7: For every k ≥ 3, Mk is triangle-free and
χ(Mk ) ≥ k .

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all k ≤ k0, but χ(Mk0+1) = k0.
Let f be a k0-coloring of Mk0+1. We may assume that f (w) = k0.

Then color k0 is not used on V ′
k0

. Let W = {vi1 , . . . , vis} be the
set of the vertices in Vk0 colored with k0. We will recolor them:
for each 1 ≤ j ≤ s, recolor vij with f (uij ). Then color k0 is not
used in the new coloring f ′ of Mk .

We claim that

f ′(vi) ̸= f ′(vj) for each edge vivj ∈ E(Mk0). (1)
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Indeed, suppose f ′(vi) = f ′(vj). If f (vi) ̸= k0 and f (vj) ̸= k0, then
the colors of vi and vj did not change, but f (vi) ̸= f (vj), a
contradiction. If f (vi) = k0 = f (vj), then vi and vj cannot be
adjacent.

So, we may assume f (vi) = k0 and f (vj) ̸= k0. This means
f (ui) = f (vj). But uivj ∈ E(Mk0+1), a contradiction.

This shows that the difference χ(G)− ω(G) and the ratio χ(G)
ω(G)

can be arbitrarily large.
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