Graph coloring. Part 2

Lecture 33

Example 1: A graph G is 1-degenerate iff G is a forest.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example 1: A graph *G* is 1-degenerate iff *G* is a forest.

Example 2: Every planar simple graph is 5-degenerate.

Example 1: A graph *G* is 1-degenerate iff *G* is a forest.

Example 2: Every planar simple graph is 5-degenerate.

Definition B. A graph *G* is *d*-degenerate if its vertices can be ordered v_1, \ldots, v_n so that for each $1 < i \le n$, vertex v_i has at most *d* neighbors in $\{v_1, \ldots, v_{i-1}\}$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Example 1: A graph *G* is 1-degenerate iff *G* is a forest.

Example 2: Every planar simple graph is 5-degenerate.

Definition B. A graph *G* is *d*-degenerate if its vertices can be ordered v_1, \ldots, v_n so that for each $1 < i \le n$, vertex v_i has at most *d* neighbors in $\{v_1, \ldots, v_{i-1}\}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proposition 5.3. Definitions (A) and (B) are equivalent.

Proof: In the lecture.

(日)

Proof: Use the ordering of vertices provided by Definition B, and apply to it the greedy coloring.

(ロ) (同) (三) (三) (三) (○) (○)

Proof: Use the ordering of vertices provided by Definition B, and apply to it the greedy coloring.

Theorem 5.5. Every planar graph is 6-colorable.

Proof: Let *G* be a planar graph. By Example 2, *G* is 5-degenerate. So by Proposition 5.4, *G* is 6-colorable.

Proof: Use the ordering of vertices provided by Definition B, and apply to it the greedy coloring.

Theorem 5.5. Every planar graph is 6-colorable.

Proof: Let *G* be a planar graph. By Example 2, *G* is 5-degenerate. So by Proposition 5.4, *G* is 6-colorable.

For $k \ge 1$, a graph *G* is *k*-critical, if $\chi(G) = k$, but for each proper subgraph *G'* of *G*,

 $\chi(G') \leq k-1.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof: Use the ordering of vertices provided by Definition B, and apply to it the greedy coloring.

Theorem 5.5. Every planar graph is 6-colorable.

Proof: Let *G* be a planar graph. By Example 2, *G* is 5-degenerate. So by Proposition 5.4, *G* is 6-colorable.

For $k \ge 1$, a graph *G* is *k*-critical, if $\chi(G) = k$, but for each proper subgraph *G'* of *G*,

 $\chi(G') \leq k-1.$

(ロ) (同) (三) (三) (三) (○) (○)

Examples: (a) Complete graphs, (b) Odd cycles, (c) Odd wheels, (d) Moser spindle.

Theorem 5.6. Let $k \ge 3$ and *G* be a *k*-critical graph. Then (a) $\kappa(G) \ge 2$; (b) $\kappa'(G) \ge k - 1$. Moreover, for each $k \ge 3$ there are infinitely many *k*-critical graphs with connectivity exactly 2.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 5.6. Let $k \ge 3$ and *G* be a *k*-critical graph. Then (a) $\kappa(G) \ge 2$; (b) $\kappa'(G) \ge k - 1$. Moreover, for each $k \ge 3$ there are infinitely many *k*-critical graphs with connectivity exactly 2.

Proof of (a): Suppose our *k*-critical *G* is disconnected and *G*₁ is a component of *G*. Since *G* is *k*-critical, its proper subgraphs G_1 and $G - V(G_1)$ have chromatic number at most k - 1. Let f_1 and f - 2 be their (k - 1)-colorings. Then $f_1 \cup f_2$ is a (k - 1)-coloring of *G*, a contradiction.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem 5.6. Let $k \ge 3$ and *G* be a *k*-critical graph. Then (a) $\kappa(G) \ge 2$; (b) $\kappa'(G) \ge k - 1$. Moreover, for each $k \ge 3$ there are infinitely many *k*-critical graphs with connectivity exactly 2.

Proof of (a): Suppose our *k*-critical *G* is disconnected and *G*₁ is a component of *G*. Since *G* is *k*-critical, its proper subgraphs G_1 and $G - V(G_1)$ have chromatic number at most k - 1. Let f_1 and f - 2 be their (k - 1)-colorings. Then $f_1 \cup f_2$ is a (k - 1)-coloring of *G*, a contradiction.

Suppose now *G* is connected and *v* is a cut vertex in *G*. Let *G'* be a component of G - v, $G_1 = G - V(G')$ and $G_2 = G[V(G') + v]$. Again, since *G* is *k*-critical, for $i = 1, 2, G_i$ has a (k - 1)-coloring f_i . We can rename the colors in f_2 to make $f_2(v) = f_1(v)$. Then again, $f_1 \cup f_2$ is a (k - 1)-coloring of *G*, a contradiction.

Proof of (b): Suppose $\kappa'(G) \leq k - 2$. Then *G* has a vertex partition (S, \overline{S}) s.t. $E_G(S, \overline{S}) = \{x_i y_i : 1 \leq i \leq s\}$, where $s \leq k - 2, \{x_1, \dots, x_s\} \subset S$ and $\{y_1, \dots, y_s\} \subset \overline{S}$. Note that x_i s do not need to be all distinct and y_i s do not need to be all distinct.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Proof of (b): Suppose $\kappa'(G) \leq k - 2$. Then *G* has a vertex partition (S, \overline{S}) s.t. $E_G(S, \overline{S}) = \{x_i y_i : 1 \leq i \leq s\}$, where $s \leq k - 2$, $\{x_1, \ldots, x_s\} \subset S$ and $\{y_1, \ldots, y_s\} \subset \overline{S}$. Note that x_i s do not need to be all distinct and y_i s do not need to be all distinct.

Let $G_1 = G[S]$ and $G_2 = G[\overline{S}]$. Since G is *k*-critical, for i = 1, 2, G_i has a (k - 1)-coloring f_i .

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

We try to rename the colors of f_2 so that $f_1(x_i) \neq f_2(y_i)$ for all $1 \le i \le s$. There are (k - 1)! ways to rename these k - 1 colors. Each of the edges x_iy_i spoils the (k - 2)! cases where $f_1(x_i) = f_2(y_i)$. Then the number of ways to rename the colors which are not

spoiled is at least

$$(k-1)! - s((k-2)!) = (k-2)!((k-1)-s) \ge (k-2)! > 0.$$

(日) (日) (日) (日) (日) (日) (日)

Hence we can rename the colors in f_2 so that $f_1 \cup f_2$ is a (k - 1)-coloring of *G*, a contradiction.

We try to rename the colors of f_2 so that $f_1(x_i) \neq f_2(y_i)$ for all $1 \le i \le s$. There are (k - 1)! ways to rename these k - 1 colors. Each of the edges x_iy_i spoils the (k - 2)! cases where $f_1(x_i) = f_2(y_i)$. Then the number of ways to rename the colors which are not

spoiled is at least

 $(k-1)! - s((k-2)!) = (k-2)!((k-1)-s) \ge (k-2)! > 0.$

Hence we can rename the colors in f_2 so that $f_1 \cup f_2$ is a (k-1)-coloring of G, a contradiction.

Proof of the "Moreover" part: We describe the Hájos Construction that creates from two k-critical graphs a new k-critical graph with connectivity exactly 2.

1) Take two disjoint *k*-critical graphs G_1 and G_2 .

2) Choose an edge x_1y_1 in G_1 and an edge x_2y_2 in G_2 .

3) Delete the edges x_1y_1 and x_2y_2 , glue x_2 with x_1 into a new vertex x^* , add edge y_1y_2 . Call new graph G^* .

1) Take two disjoint *k*-critical graphs G_1 and G_2 .

2) Choose an edge x_1y_1 in G_1 and an edge x_2y_2 in G_2 .

3) Delete the edges x_1y_1 and x_2y_2 , glue x_2 with x_1 into a new vertex x^* , add edge y_1y_2 . Call new graph G^* .

・ コット (雪) (小田) (コット 日)

1) Take two disjoint *k*-critical graphs G_1 and G_2 .

2) Choose an edge x_1y_1 in G_1 and an edge x_2y_2 in G_2 .

3) Delete the edges x_1y_1 and x_2y_2 , glue x_2 with x_1 into a new vertex x^* , add edge y_1y_2 . Call new graph G^* .

By construction, set $\{x^*, y_1\}$ is separating in G^* . So $\kappa(G^*) = 2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Now we show that *G*^{*} is *k*-critical.

Suppose G^* has a (k - 1)-coloring f. Since $f |_{V(G_1)}$ is NOT a (k - 1)-coloring of G_1 , $f(x^*) = f(y_1)$. Similarly, $f(x^*) = f(y_2)$. But then $f(y_1) = f(y_2)$, a contradiction. Now we show that *G*^{*} is *k*-critical.

Suppose G^* has a (k - 1)-coloring f. Since $f |_{V(G_1)}$ is NOT a (k - 1)-coloring of G_1 , $f(x^*) = f(y_1)$. Similarly, $f(x^*) = f(y_2)$. But then $f(y_1) = f(y_2)$, a contradiction.

Consider $G^* - y_1 y_2$. Since G_1 and G_2 are *k*-critical, for i = 1, 2, $G_i - x_i y_i$ has a (k - 1)-coloring *f*, and $f_i(y_i) = f_i(x_i)$. Then after permuting the colors in f_2 so that $f_2(x_2) = f_1(x_1)$, we get that $f_1 \cup f_2$ is a (k - 1)-coloring of $G^* - y_1 y_2$.

Now we show that *G*^{*} is *k*-critical.

Suppose G^* has a (k - 1)-coloring f. Since $f |_{V(G_1)}$ is NOT a (k - 1)-coloring of G_1 , $f(x^*) = f(y_1)$. Similarly, $f(x^*) = f(y_2)$. But then $f(y_1) = f(y_2)$, a contradiction.

Consider $G^* - y_1 y_2$. Since G_1 and G_2 are *k*-critical, for i = 1, 2, $G_i - x_i y_i$ has a (k - 1)-coloring *f*, and $f_i(y_i) = f_i(x_i)$. Then after permuting the colors in f_2 so that $f_2(x_2) = f_1(x_1)$, we get that $f_1 \cup f_2$ is a (k - 1)-coloring of $G^* - y_1 y_2$.

Finally, let uv be any other edge of G^* . By symmetry, we may assume $\{u, v\} \subset V(G_1)$ (or one of them is x^*). Then $G_1 - uv$ has a (k - 1)-coloring f_1 and $G_2 - x_2y_2$ has a (k - 1)-coloring f_2 . After permuting the colors in f_2 so that $f_2(x_2) = f_1(x_1)$, we get that $f_1 \cup f_2$ is a (k - 1)-coloring of $G^* - uv$.

Definitions

Mycielski's Construction: $M_3 = C_5$. Suppose M_k is a triangle-free graph with $\chi(M_k) = k$ and $V(M_k) = V_k = \{v_1, ..., v_{n_k}\}$. Let $V'_k = \{u_1, ..., u_{n_k}\}$. Then $V(M_{k+1}) = V_k \cup V'_k \cup \{w\}, M_{k+1}[V_k] = M_k, N_{M_{k+1}}(w) = V'_k$ and for each $1 \le j \le n_k, N_{M_{k+1}}(u_j) = N_{M_k}(v_j) \cup \{w\}$.

Definitions

Mycielski's Construction: $M_3 = C_5$. Suppose M_k is a triangle-free graph with $\chi(M_k) = k$ and $V(M_k) = V_k = \{v_1, ..., v_{n_k}\}$. Let $V'_k = \{u_1, ..., u_{n_k}\}$. Then $V(M_{k+1}) = V_k \cup V'_k \cup \{w\}, M_{k+1}[V_k] = M_k, N_{M_{k+1}}(w) = V'_k$ and for each $1 \le j \le n_k, N_{M_{k+1}}(u_i) = N_{M_k}(v_i) \cup \{w\}$.

Proof. For k = 3 this is trivial.

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all $k \le k_0$, but $\chi(M_{k_0+1}) = k_0$. Let *f* be a k_0 -coloring of M_{k_0+1} . We may assume that $f(w) = k_0$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all $k \le k_0$, but $\chi(M_{k_0+1}) = k_0$. Let *f* be a k_0 -coloring of M_{k_0+1} . We may assume that $f(w) = k_0$.

Then color k_0 is not used on V'_{k_0} . Let $W = \{v_{i_1}, \ldots, v_{i_s}\}$ be the set of the vertices in V_{k_0} colored with k_0 . We will recolor them: for each $1 \le j \le s$, recolor v_{i_j} with $f(u_{i_j})$. Then color k_0 is not used in the new coloring f' of M_k .

(日) (日) (日) (日) (日) (日) (日)

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all $k \le k_0$, but $\chi(M_{k_0+1}) = k_0$. Let *f* be a k_0 -coloring of M_{k_0+1} . We may assume that $f(w) = k_0$.

Then color k_0 is not used on V'_{k_0} . Let $W = \{v_{i_1}, \ldots, v_{i_s}\}$ be the set of the vertices in V_{k_0} colored with k_0 . We will recolor them: for each $1 \le j \le s$, recolor v_{i_j} with $f(u_{i_j})$. Then color k_0 is not used in the new coloring f' of M_k .

We claim that

 $f'(v_i) \neq f'(v_j)$ for each edge $v_i v_j \in E(M_{k_0})$. (1)

(日)(1)<

Indeed, suppose $f'(v_i) = f'(v_j)$. If $f(v_i) \neq k_0$ and $f(v_j) \neq k_0$, then the colors of v_i and v_j did not change, but $f(v_i) \neq f(v_j)$, a contradiction. If $f(v_i) = k_0 = f(v_j)$, then v_i and v_j cannot be adjacent.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Indeed, suppose $f'(v_i) = f'(v_j)$. If $f(v_i) \neq k_0$ and $f(v_j) \neq k_0$, then the colors of v_i and v_j did not change, but $f(v_i) \neq f(v_j)$, a contradiction. If $f(v_i) = k_0 = f(v_j)$, then v_i and v_j cannot be adjacent.

(ロ) (同) (三) (三) (三) (○) (○)

So, we may assume $f(v_i) = k_0$ and $f(v_j) \neq k_0$. This means $f(u_i) = f(v_j)$. But $u_i v_j \in E(M_{k_0+1})$, a contradiction.

Indeed, suppose $f'(v_i) = f'(v_j)$. If $f(v_i) \neq k_0$ and $f(v_j) \neq k_0$, then the colors of v_i and v_j did not change, but $f(v_i) \neq f(v_j)$, a contradiction. If $f(v_i) = k_0 = f(v_j)$, then v_i and v_j cannot be adjacent.

So, we may assume $f(v_i) = k_0$ and $f(v_j) \neq k_0$. This means $f(u_i) = f(v_j)$. But $u_i v_j \in E(M_{k_0+1})$, a contradiction.

This shows that the difference $\chi(G) - \omega(G)$ and the ratio $\frac{\chi(G)}{\omega(G)}$ can be arbitrarily large.

(日) (日) (日) (日) (日) (日) (日)