Graph coloring. Part 3

Lecture 34

For $k \geq 1$, a graph G is k-critical, if $\chi(G)=k$, but for each proper subgraph G^{\prime} of G,

$$
\chi\left(G^{\prime}\right) \leq k-1
$$

Examples: (a) Complete graphs, (b) Odd cycles, (c) Odd wheels, (d) Moser spindle.

Theorem 5.6. Let $k \geq 3$ and G be a k-critical graph. Then (a) $\kappa(G) \geq 2$;
(b) $\kappa^{\prime}(G) \geq k-1$.

Moreover, for each $k \geq 3$ there are infinitely many k-critical graphs with connectivity exactly 2.

Theorem 5.6. Let $k \geq 3$ and G be a k-critical graph. Then (a) $\kappa(G) \geq 2$;
(b) $\kappa^{\prime}(G) \geq k-1$.

Moreover, for each $k \geq 3$ there are infinitely many k-critical graphs with connectivity exactly 2.

Proof of (a): Suppose our k-critical G is disconnected and G_{1} is a component of G. Since G is k-critical, its proper subgraphs G_{1} and $G-V\left(G_{1}\right)$ have chromatic number at most $k-1$. Let f_{1} and $f-2$ be their $(k-1)$-colorings. Then $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of G, a contradiction.

Theorem 5.6. Let $k \geq 3$ and G be a k-critical graph. Then
(a) $\kappa(G) \geq 2$;
(b) $\kappa^{\prime}(G) \geq k-1$.

Moreover, for each $k \geq 3$ there are infinitely many k-critical graphs with connectivity exactly 2.

Proof of (a): Suppose our k-critical G is disconnected and G_{1} is a component of G. Since G is k-critical, its proper subgraphs G_{1} and $G-V\left(G_{1}\right)$ have chromatic number at most $k-1$. Let f_{1} and $f-2$ be their $(k-1)$-colorings. Then $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of G, a contradiction.

Suppose now G is connected and v is a cut vertex in G. Let G^{\prime} be a component of $G-v, G_{1}=G-V\left(G^{\prime}\right)$ and $G_{2}=G\left[V\left(G^{\prime}\right)+v\right]$. Again, since G is k-critical, for $i=1,2, G_{i}$ has a $(k-1)$-coloring f_{i}. We can rename the colors in f_{2} to make $f_{2}(v)=f_{1}(v)$. Then again, $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of G, a contradiction.

Proof of (b) : Suppose $\kappa^{\prime}(G) \leq k-2$. Then G has a vertex partition (S, \bar{S}) s.t. $E_{G}(S, \bar{S})=\left\{x_{i} y_{i}: 1 \leq i \leq s\right\}$, where $s \leq k-2,\left\{x_{1}, \ldots, x_{s}\right\} \subset S$ and $\left\{y_{1}, \ldots, y_{s}\right\} \subset \bar{S}$.
Note that $x_{i} \mathrm{~s}$ do not need to be all distinct and $y_{i} \mathrm{~s}$ do not need to be all distinct.

Proof of (b) : Suppose $\kappa^{\prime}(G) \leq k-2$. Then G has a vertex partition (S, \bar{S}) s.t. $E_{G}(S, \bar{S})=\left\{x_{i} y_{i}: 1 \leq i \leq s\right\}$, where $s \leq k-2,\left\{x_{1}, \ldots, x_{s}\right\} \subset S$ and $\left\{y_{1}, \ldots, y_{s}\right\} \subset \bar{S}$.
Note that $x_{i} \mathrm{~s}$ do not need to be all distinct and $y_{i} s$ do not need to be all distinct.

Let $G_{1}=G[S]$ and $G_{2}=G[\bar{S}]$. Since G is k-critical, for $i=1,2$, G_{i} has a $(k-1)$-coloring f_{i}.

We try to rename the colors of f_{2} so that $f_{1}\left(x_{i}\right) \neq f_{2}\left(y_{i}\right)$ for all $1 \leq i \leq s$. There are $(k-1)$! ways to rename these $k-1$ colors. Each of the edges $x_{i} y_{i}$ spoils the $(k-2)$! cases where $f_{1}\left(x_{i}\right)=f_{2}\left(y_{i}\right)$.
Then the number of ways to rename the colors which are not spoiled is at least

$$
(k-1)!-s((k-2)!)=(k-2)!((k-1)-s) \geq(k-2)!>0
$$

Hence we can rename the colors in f_{2} so that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of G, a contradiction.

We try to rename the colors of f_{2} so that $f_{1}\left(x_{i}\right) \neq f_{2}\left(y_{i}\right)$ for all $1 \leq i \leq s$. There are $(k-1)$! ways to rename these $k-1$ colors. Each of the edges $x_{i} y_{i}$ spoils the ($k-2$)! cases where $f_{1}\left(x_{i}\right)=f_{2}\left(y_{i}\right)$.
Then the number of ways to rename the colors which are not spoiled is at least

$$
(k-1)!-s((k-2)!)=(k-2)!((k-1)-s) \geq(k-2)!>0 .
$$

Hence we can rename the colors in f_{2} so that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of G, a contradiction.

Proof of the "Moreover" part: We describe the Hájos
Construction that creates from two k-critical graphs a new k-critical graph with connectivity exactly 2.

1) Take two disjoint k-critical graphs G_{1} and G_{2}.
2) Choose an edge $x_{1} y_{1}$ in G_{1} and an edge $x_{2} y_{2}$ in G_{2}.
3) Delete the edges $x_{1} y_{1}$ and $x_{2} y_{2}$, glue x_{2} with x_{1} into a new vertex x^{*}, add edge $y_{1} y_{2}$. Call new graph G^{*}.
4) Take two disjoint k-critical graphs G_{1} and G_{2}.
5) Choose an edge $x_{1} y_{1}$ in G_{1} and an edge $x_{2} y_{2}$ in G_{2}.
6) Delete the edges $x_{1} y_{1}$ and $x_{2} y_{2}$, glue x_{2} with x_{1} into a new vertex x^{*}, add edge $y_{1} y_{2}$. Call new graph G^{*}.

7) Take two disjoint k-critical graphs G_{1} and G_{2}.
8) Choose an edge $x_{1} y_{1}$ in G_{1} and an edge $x_{2} y_{2}$ in G_{2}.
9) Delete the edges $x_{1} y_{1}$ and $x_{2} y_{2}$, glue x_{2} with x_{1} into a new vertex x^{*}, add edge $y_{1} y_{2}$. Call new graph G^{*}.

By construction, set $\left\{x^{*}, y_{1}\right\}$ is separating in G^{*}. So $\kappa\left(G^{*}\right)=2$.

Now we show that G^{*} is k-critical.
Suppose G^{*} has a $(k-1)$-coloring f. Since $\left.f\right|_{v\left(G_{1}\right)}$ is NOT a $(k-1)$-coloring of $G_{1}, f\left(x^{*}\right)=f\left(y_{1}\right)$. Similarly, $f\left(x^{*}\right)=f\left(y_{2}\right)$. But then $f\left(y_{1}\right)=f\left(y_{2}\right)$, a contradiction.

Now we show that G^{*} is k-critical.
Suppose G^{*} has a $(k-1)$-coloring f. Since $\left.f\right|_{v\left(G_{1}\right)}$ is NOT a $(k-1)$-coloring of $G_{1}, f\left(x^{*}\right)=f\left(y_{1}\right)$. Similarly, $f\left(x^{*}\right)=f\left(y_{2}\right)$. But then $f\left(y_{1}\right)=f\left(y_{2}\right)$, a contradiction.

Consider $G^{*}-y_{1} y_{2}$. Since G_{1} and G_{2} are k-critical, for $i=1,2$, $G_{i}-x_{i} y_{i}$ has a $(k-1)$-coloring f, and $f_{i}\left(y_{i}\right)=f_{i}\left(x_{i}\right)$. Then after permuting the colors in f_{2} so that $f_{2}\left(x_{2}\right)=f_{1}\left(x_{1}\right)$, we get that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of $G^{*}-y_{1} y_{2}$.

Now we show that G^{*} is k-critical.
Suppose G^{*} has a $(k-1)$-coloring f. Since $\left.f\right|_{v\left(G_{1}\right)}$ is NOT a $(k-1)$-coloring of $G_{1}, f\left(x^{*}\right)=f\left(y_{1}\right)$. Similarly, $f\left(x^{*}\right)=f\left(y_{2}\right)$. But then $f\left(y_{1}\right)=f\left(y_{2}\right)$, a contradiction.

Consider $G^{*}-y_{1} y_{2}$. Since G_{1} and G_{2} are k-critical, for $i=1,2$, $G_{i}-x_{i} y_{i}$ has a $(k-1)$-coloring f, and $f_{i}\left(y_{i}\right)=f_{i}\left(x_{i}\right)$. Then after permuting the colors in f_{2} so that $f_{2}\left(x_{2}\right)=f_{1}\left(x_{1}\right)$, we get that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of $G^{*}-y_{1} y_{2}$.

Finally, let $u v$ be any other edge of G^{*}. By symmetry, we may assume $\{u, v\} \subset V\left(G_{1}\right)$ (or one of them is x^{*}). Then $G_{1}-u v$ has a $(k-1)$-coloring f_{1} and $G_{2}-x_{2} y_{2}$ has a $(k-1)$-coloring f_{2}. After permuting the colors in f_{2} so that $f_{2}\left(x_{2}\right)=f_{1}\left(x_{1}\right)$, we get that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of $G^{*}-u v$.

Definitions

Mycielski's Construction: $M_{3}=C_{5}$. Suppose M_{k} is a triangle-free graph with $\chi\left(M_{k}\right)=k$ and
$V\left(M_{k}\right)=V_{k}=\left\{v_{1}, \ldots, v_{n_{k}}\right\}$. Let $V_{k}^{\prime}=\left\{u_{1}, \ldots, u_{n_{k}}\right\}$. Then
$V\left(M_{k+1}\right)=V_{k} \cup V_{k}^{\prime} \cup\{w\}, M_{k+1}\left[V_{k}\right]=M_{k}, N_{M_{k+1}}(w)=V_{k}^{\prime}$ and for each $1 \leq j \leq n_{k}, N_{M_{k+1}}\left(u_{j}\right)=N_{M_{k}}\left(v_{j}\right) \cup\{w\}$.

Definitions

Mycielski's Construction: $M_{3}=C_{5}$. Suppose M_{k} is a triangle-free graph with $\chi\left(M_{k}\right)=k$ and
$V\left(M_{k}\right)=V_{k}=\left\{v_{1}, \ldots, v_{n_{k}}\right\}$. Let $V_{k}^{\prime}=\left\{u_{1}, \ldots, u_{n_{k}}\right\}$. Then
$V\left(M_{k+1}\right)=V_{k} \cup V_{k}^{\prime} \cup\{w\}, M_{k+1}\left[V_{k}\right]=M_{k}, N_{M_{k+1}}(w)=V_{k}^{\prime}$ and for each $1 \leq i \leq n_{k}, N_{M_{L_{1}}}\left(u_{i}\right)=N_{M_{\iota}}\left(v_{i}\right) \cup\{w\}$.

Theorem 5.7: For every $k \geq 3, M_{k}$ is triangle-free and $\chi\left(M_{k}\right) \geq k$.
Proof. For $k=3$ this is trivial.

Theorem 5.7: For every $k \geq 3, M_{k}$ is triangle-free and $\chi\left(M_{k}\right) \geq k$.

Proof. For $k=3$ this is trivial.
Suppose the theorem holds for all $k \leq k_{0}$, but $\chi\left(M_{k_{0}+1}\right)=k_{0}$. Let f be a k_{0}-coloring of $M_{k_{0}+1}$. We may assume that $f(w)=k_{0}$.

Theorem 5.7: For every $k \geq 3, M_{k}$ is triangle-free and $\chi\left(M_{k}\right) \geq k$.

Proof. For $k=3$ this is trivial.
Suppose the theorem holds for all $k \leq k_{0}$, but $\chi\left(M_{k_{0}+1}\right)=k_{0}$. Let f be a k_{0}-coloring of $M_{k_{0}+1}$. We may assume that $f(w)=k_{0}$.

Then color k_{0} is not used on $V_{k_{0}}^{\prime}$. Let $W=\left\{v_{i_{1}}, \ldots, v_{i_{s}}\right\}$ be the set of the vertices in $V_{k_{0}}$ colored with k_{0}. We will recolor them: for each $1 \leq j \leq s$, recolor $v_{i_{j}}$ with $f\left(u_{i_{j}}\right)$. Then color k_{0} is not used in the new coloring f^{\prime} of M_{k}.

Theorem 5.7: For every $k \geq 3, M_{k}$ is triangle-free and $\chi\left(M_{k}\right) \geq k$.

Proof. For $k=3$ this is trivial.
Suppose the theorem holds for all $k \leq k_{0}$, but $\chi\left(M_{k_{0}+1}\right)=k_{0}$. Let f be a k_{0}-coloring of $M_{k_{0}+1}$. We may assume that $f(w)=k_{0}$.

Then color k_{0} is not used on $V_{k_{0}}^{\prime}$. Let $W=\left\{v_{i_{1}}, \ldots, v_{i_{s}}\right\}$ be the set of the vertices in $V_{k_{0}}$ colored with k_{0}. We will recolor them: for each $1 \leq j \leq s$, recolor $v_{i_{j}}$ with $f\left(u_{i_{j}}\right)$. Then color k_{0} is not used in the new coloring f^{\prime} of M_{k}.

We claim that

$$
\begin{equation*}
f^{\prime}\left(v_{i}\right) \neq f^{\prime}\left(v_{j}\right) \quad \text { for each edge } v_{i} v_{j} \in E\left(M_{k_{0}}\right) \tag{1}
\end{equation*}
$$

Indeed, suppose $f^{\prime}\left(v_{i}\right)=f^{\prime}\left(v_{j}\right)$. If $f\left(v_{i}\right) \neq k_{0}$ and $f\left(v_{j}\right) \neq k_{0}$, then the colors of v_{i} and v_{j} did not change, but $f\left(v_{i}\right) \neq f\left(v_{j}\right)$, a contradiction. If $f\left(v_{i}\right)=k_{0}=f\left(v_{j}\right)$, then v_{i} and v_{j} cannot be adjacent.

Indeed, suppose $f^{\prime}\left(v_{i}\right)=f^{\prime}\left(v_{j}\right)$. If $f\left(v_{i}\right) \neq k_{0}$ and $f\left(v_{j}\right) \neq k_{0}$, then the colors of v_{i} and v_{j} did not change, but $f\left(v_{i}\right) \neq f\left(v_{j}\right)$, a contradiction. If $f\left(v_{i}\right)=k_{0}=f\left(v_{j}\right)$, then v_{i} and v_{j} cannot be adjacent.
So, we may assume $f\left(v_{i}\right)=k_{0}$ and $f\left(v_{j}\right) \neq k_{0}$. This means $f\left(u_{i}\right)=f\left(v_{j}\right)$. But $u_{i} v_{j} \in E\left(M_{k_{0}+1}\right)$, a contradiction.

Indeed, suppose $f^{\prime}\left(v_{i}\right)=f^{\prime}\left(v_{j}\right)$. If $f\left(v_{i}\right) \neq k_{0}$ and $f\left(v_{j}\right) \neq k_{0}$, then the colors of v_{i} and v_{j} did not change, but $f\left(v_{i}\right) \neq f\left(v_{j}\right)$, a contradiction. If $f\left(v_{i}\right)=k_{0}=f\left(v_{j}\right)$, then v_{i} and v_{j} cannot be adjacent.
So, we may assume $f\left(v_{i}\right)=k_{0}$ and $f\left(v_{j}\right) \neq k_{0}$. This means $f\left(u_{i}\right)=f\left(v_{j}\right)$. But $u_{i} v_{j} \in E\left(M_{k_{0}+1}\right)$, a contradiction.

This shows that the difference $\chi(G)-\omega(G)$ and the ratio $\frac{\chi(G)}{\omega(G)}$ can be arbitrarily large.

