Graph coloring. Part 3

Lecture 34

For $k \ge 1$, a graph G is k-critical, if $\chi(G) = k$, but for each proper subgraph G' of G,

$$\chi(G') \leq k-1.$$

Examples: (a) Complete graphs, (b) Odd cycles, (c) Odd wheels, (d) Moser spindle.

Theorem 5.6. Let $k \ge 3$ and G be a k-critical graph. Then

- (a) $\kappa(G) \geq 2$;
- (b) $\kappa'(G) \ge k 1$.

Moreover, for each $k \ge 3$ there are infinitely many k-critical graphs with connectivity exactly 2.

Theorem 5.6. Let $k \ge 3$ and G be a k-critical graph. Then (a) $\kappa(G) \ge 2$;

(b) $\kappa'(G) \ge k - 1$.

Moreover, for each $k \ge 3$ there are infinitely many k-critical graphs with connectivity exactly 2.

Proof of (a): Suppose our k-critical G is disconnected and G_1 is a component of G. Since G is k-critical, its proper subgraphs G_1 and $G - V(G_1)$ have chromatic number at most k - 1. Let f_1 and f - 2 be their (k - 1)-colorings. Then $f_1 \cup f_2$ is a (k - 1)-coloring of G, a contradiction.

Theorem 5.6. Let $k \ge 3$ and G be a k-critical graph. Then (a) $\kappa(G) \ge 2$;

(b) $\kappa'(G) \ge k - 1$.

Moreover, for each $k \ge 3$ there are infinitely many k-critical graphs with connectivity exactly 2.

Proof of (a): Suppose our k-critical G is disconnected and G_1 is a component of G. Since G is k-critical, its proper subgraphs G_1 and $G - V(G_1)$ have chromatic number at most k - 1. Let f_1 and f - 2 be their (k - 1)-colorings. Then $f_1 \cup f_2$ is a (k - 1)-coloring of G, a contradiction.

Suppose now G is connected and v is a cut vertex in G. Let G' be a component of G - v, $G_1 = G - V(G')$ and $G_2 = G[V(G') + v]$. Again, since G is k-critical, for i = 1, 2, G_i has a (k - 1)-coloring f_i . We can rename the colors in f_2 to make $f_2(v) = f_1(v)$. Then again, $f_1 \cup f_2$ is a (k - 1)-coloring of G, a contradiction.

Proof of (b): Suppose $\kappa'(\underline{G}) \leq k-2$. Then G has a vertex partition (S, \overline{S}) s.t. $E_G(S, \overline{S}) = \{x_i y_i : 1 \leq i \leq s\}$, where $s \leq k-2$, $\{x_1, \ldots, x_s\} \subset S$ and $\{y_1, \ldots, y_s\} \subset \overline{S}$. Note that x_i s do not need to be all distinct and y_i s do not need to be all distinct.

Proof of (b): Suppose $\kappa'(G) \le k-2$. Then G has a vertex partition (S, \overline{S}) s.t. $E_G(S, \overline{S}) = \{x_i y_i : 1 \le i \le s\}$, where $s \le k-2$, $\{x_1, \ldots, x_s\} \subset S$ and $\{y_1, \ldots, y_s\} \subset \overline{S}$. Note that x_i s do not need to be all distinct and y_i s do not need to be all distinct.

Let $G_1 = G[S]$ and $G_2 = G[\overline{S}]$. Since G is k-critical, for i = 1, 2, G_i has a (k - 1)-coloring f_i .

We try to rename the colors of f_2 so that $f_1(x_i) \neq f_2(y_i)$ for all $1 \leq i \leq s$. There are (k-1)! ways to rename these k-1 colors. Each of the edges $x_i y_i$ spoils the (k-2)! cases where $f_1(x_i) = f_2(y_i)$.

Then the number of ways to rename the colors which are not spoiled is at least

$$(k-1)! - s((k-2)!) = (k-2)!((k-1)-s) \ge (k-2)! > 0.$$

Hence we can rename the colors in f_2 so that $f_1 \cup f_2$ is a (k-1)-coloring of G, a contradiction.

We try to rename the colors of f_2 so that $f_1(x_i) \neq f_2(y_i)$ for all $1 \leq i \leq s$. There are (k-1)! ways to rename these k-1 colors. Each of the edges $x_i y_i$ spoils the (k-2)! cases where $f_1(x_i) = f_2(y_i)$.

Then the number of ways to rename the colors which are not spoiled is at least

$$(k-1)! - s((k-2)!) = (k-2)!((k-1)-s) \ge (k-2)! > 0.$$

Hence we can rename the colors in f_2 so that $f_1 \cup f_2$ is a (k-1)-coloring of G, a contradiction.

Proof of the "Moreover" part: We describe the Hájos Construction that creates from two *k*-critical graphs a new *k*-critical graph with connectivity exactly 2.

- 1) Take two disjoint k-critical graphs G_1 and G_2 .
- 2) Choose an edge x_1y_1 in G_1 and an edge x_2y_2 in G_2 .
- 3) Delete the edges x_1y_1 and x_2y_2 , glue x_2 with x_1 into a new vertex x^* , add edge y_1y_2 . Call new graph G^* .

- 1) Take two disjoint k-critical graphs G_1 and G_2 .
- 2) Choose an edge x_1y_1 in G_1 and an edge x_2y_2 in G_2 .
- 3) Delete the edges x_1y_1 and x_2y_2 , glue x_2 with x_1 into a new vertex x^* , add edge y_1y_2 . Call new graph G^* .

- 1) Take two disjoint k-critical graphs G_1 and G_2 .
- 2) Choose an edge x_1y_1 in G_1 and an edge x_2y_2 in G_2 .
- 3) Delete the edges x_1y_1 and x_2y_2 , glue x_2 with x_1 into a new vertex x^* , add edge y_1y_2 . Call new graph G^* .

By construction, set $\{x^*, y_1\}$ is separating in G^* . So $\kappa(G^*) = 2$.

Now we show that G^* is k-critical. Suppose G^* has a (k-1)-coloring f. Since $f|_{V(G_1)}$ is NOT a (k-1)-coloring of G_1 , $f(x^*) = f(y_1)$. Similarly, $f(x^*) = f(y_2)$. But then $f(y_1) = f(y_2)$, a contradiction. Now we show that G^* is k-critical. Suppose G^* has a (k-1)-coloring f. Since $f|_{V(G_1)}$ is NOT a (k-1)-coloring of G_1 , $f(x^*) = f(y_1)$. Similarly, $f(x^*) = f(y_2)$. But then $f(y_1) = f(y_2)$, a contradiction.

Consider $G^* - y_1 y_2$. Since G_1 and G_2 are k-critical, for i = 1, 2, $G_i - x_i y_i$ has a (k - 1)-coloring f, and $f_i(y_i) = f_i(x_i)$. Then after permuting the colors in f_2 so that $f_2(x_2) = f_1(x_1)$, we get that $f_1 \cup f_2$ is a (k - 1)-coloring of $G^* - y_1 y_2$.

Now we show that G^* is k-critical. Suppose G^* has a (k-1)-coloring f. Since $f|_{V(G_1)}$ is NOT a (k-1)-coloring of G_1 , $f(x^*) = f(y_1)$. Similarly, $f(x^*) = f(y_2)$. But then $f(y_1) = f(y_2)$, a contradiction.

Consider $G^* - y_1 y_2$. Since G_1 and G_2 are k-critical, for i = 1, 2, $G_i - x_i y_i$ has a (k - 1)-coloring f, and $f_i(y_i) = f_i(x_i)$. Then after permuting the colors in f_2 so that $f_2(x_2) = f_1(x_1)$, we get that $f_1 \cup f_2$ is a (k - 1)-coloring of $G^* - y_1 y_2$.

Finally, let uv be any other edge of G^* . By symmetry, we may assume $\{u,v\} \subset V(G_1)$ (or one of them is x^*). Then $G_1 - uv$ has a (k-1)-coloring f_1 and $G_2 - x_2y_2$ has a (k-1)-coloring f_2 . After permuting the colors in f_2 so that $f_2(x_2) = f_1(x_1)$, we get that $f_1 \cup f_2$ is a (k-1)-coloring of $G^* - uv$.

Definitions

```
Mycielski's Construction: M_3 = C_5. Suppose M_k is a triangle-free graph with \chi(M_k) = k and V(M_k) = V_k = \{v_1, ..., v_{n_k}\}. Let V_k' = \{u_1, ..., u_{n_k}\}. Then V(M_{k+1}) = V_k \cup V_k' \cup \{w\}, M_{k+1}[V_k] = M_k, N_{M_{k+1}}(w) = V_k' and for each 1 \le j \le n_k, N_{M_{k+1}}(u_j) = N_{M_k}(v_j) \cup \{w\}.
```

Definitions

Mycielski's Construction: $M_3 = C_5$. Suppose M_k is a triangle-free graph with $\chi(M_k) = k$ and $V(M_k) = V_k = \{v_1, ..., v_{n_k}\}$. Let $V_k' = \{u_1, ..., u_{n_k}\}$. Then $V(M_{k+1}) = V_k \cup V_k' \cup \{w\}$, $M_{k+1}[V_k] = M_k$, $N_{M_{k+1}}(w) = V_k'$ and for each $1 \le j \le n_k$, $N_{M_{k+1}}(u_i) = N_{M_k}(v_i) \cup \{w\}$.

Proof. For k = 3 this is trivial.

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all $k \le k_0$, but $\chi(M_{k_0+1}) = k_0$. Let f be a k_0 -coloring of M_{k_0+1} . We may assume that $f(w) = k_0$.

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all $k \le k_0$, but $\chi(M_{k_0+1}) = k_0$. Let f be a k_0 -coloring of M_{k_0+1} . We may assume that $f(w) = k_0$.

Then color k_0 is not used on V'_{k_0} . Let $W = \{v_{i_1}, \ldots, v_{i_s}\}$ be the set of the vertices in V_{k_0} colored with k_0 . We will recolor them: for each $1 \le j \le s$, recolor v_{i_j} with $f(u_{i_j})$. Then color k_0 is not used in the new coloring f' of M_k .

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all $k \le k_0$, but $\chi(M_{k_0+1}) = k_0$. Let f be a k_0 -coloring of M_{k_0+1} . We may assume that $f(w) = k_0$.

Then color k_0 is not used on V'_{k_0} . Let $W = \{v_{i_1}, \dots, v_{i_s}\}$ be the set of the vertices in V_{k_0} colored with k_0 . We will recolor them: for each $1 \le j \le s$, recolor v_{i_j} with $f(u_{i_j})$. Then color k_0 is not used in the new coloring f' of M_k .

We claim that

$$f'(v_i) \neq f'(v_i)$$
 for each edge $v_i v_i \in E(M_{k_0})$. (1)

Indeed, suppose $f'(v_i) = f'(v_j)$. If $f(v_i) \neq k_0$ and $f(v_j) \neq k_0$, then the colors of v_i and v_j did not change, but $f(v_i) \neq f(v_j)$, a contradiction. If $f(v_i) = k_0 = f(v_j)$, then v_i and v_j cannot be adjacent.

Indeed, suppose $f'(v_i) = f'(v_j)$. If $f(v_i) \neq k_0$ and $f(v_j) \neq k_0$, then the colors of v_i and v_j did not change, but $f(v_i) \neq f(v_j)$, a contradiction. If $f(v_i) = k_0 = f(v_j)$, then v_i and v_j cannot be adjacent.

So, we may assume $f(v_i) = k_0$ and $f(v_j) \neq k_0$. This means $f(u_i) = f(v_j)$. But $u_i v_j \in E(M_{k_0+1})$, a contradiction.

Indeed, suppose $f'(v_i) = f'(v_j)$. If $f(v_i) \neq k_0$ and $f(v_j) \neq k_0$, then the colors of v_i and v_j did not change, but $f(v_i) \neq f(v_j)$, a contradiction. If $f(v_i) = k_0 = f(v_j)$, then v_i and v_j cannot be adjacent.

So, we may assume $f(v_i) = k_0$ and $f(v_j) \neq k_0$. This means $f(u_i) = f(v_j)$. But $u_i v_j \in E(M_{k_0+1})$, a contradiction.

This shows that the difference $\chi(G) - \omega(G)$ and the ratio $\frac{\chi(G)}{\omega(G)}$ can be arbitrarily large.