Graph coloring. Part 4

Lecture 35

For $k \geq 1$, a graph G is k-critical, if $\chi(G)=k$, but for each proper subgraph G^{\prime} of G,

$$
\chi\left(G^{\prime}\right) \leq k-1
$$

Theorem 5.6. Let $k \geq 3$ and G be a k-critical graph. Then (a) $\kappa(G) \geq 2$;
(b) $\kappa^{\prime}(G) \geq k-1$.

Moreover, for each $k \geq 3$ there are infinitely many k-critical graphs with connectivity exactly 2.

Proof of the "Moreover" part: We describe the Hájos Construction that creates from two k-critical graphs a new k-critical graph with connectivity exactly 2.

1) Take two disjoint k-critical graphs G_{1} and G_{2}.
2) Choose an edge $x_{1} y_{1}$ in G_{1} and an edge $x_{2} y_{2}$ in G_{2}.
3) Delete the edges $x_{1} y_{1}$ and $x_{2} y_{2}$, glue x_{2} with x_{1} into a new vertex x^{*}, add edge $y_{1} y_{2}$. Call new graph G^{*}.
4) Take two disjoint k-critical graphs G_{1} and G_{2}.
5) Choose an edge $x_{1} y_{1}$ in G_{1} and an edge $x_{2} y_{2}$ in G_{2}.
6) Delete the edges $x_{1} y_{1}$ and $x_{2} y_{2}$, glue x_{2} with x_{1} into a new vertex x^{*}, add edge $y_{1} y_{2}$. Call new graph G^{*}.

7) Take two disjoint k-critical graphs G_{1} and G_{2}.
8) Choose an edge $x_{1} y_{1}$ in G_{1} and an edge $x_{2} y_{2}$ in G_{2}.
9) Delete the edges $x_{1} y_{1}$ and $x_{2} y_{2}$, glue x_{2} with x_{1} into a new vertex x^{*}, add edge $y_{1} y_{2}$. Call new graph G^{*}.

By construction, set $\left\{x^{*}, y_{1}\right\}$ is separating in G^{*}. So $\kappa\left(G^{*}\right)=2$.

Now we show that G^{*} is k-critical.
Suppose G^{*} has a $(k-1)$-coloring f. Since $\left.f\right|_{v\left(G_{1}\right)}$ is NOT a $(k-1)$-coloring of $G_{1}, f\left(x^{*}\right)=f\left(y_{1}\right)$. Similarly, $f\left(x^{*}\right)=f\left(y_{2}\right)$. But then $f\left(y_{1}\right)=f\left(y_{2}\right)$, a contradiction.

Now we show that G^{*} is k-critical.
Suppose G^{*} has a $(k-1)$-coloring f. Since $\left.f\right|_{v\left(G_{1}\right)}$ is NOT a $(k-1)$-coloring of $G_{1}, f\left(x^{*}\right)=f\left(y_{1}\right)$. Similarly, $f\left(x^{*}\right)=f\left(y_{2}\right)$. But then $f\left(y_{1}\right)=f\left(y_{2}\right)$, a contradiction.

Consider $G^{*}-y_{1} y_{2}$. Since G_{1} and G_{2} are k-critical, for $i=1,2$, $G_{i}-x_{i} y_{i}$ has a $(k-1)$-coloring f, and $f_{i}\left(y_{i}\right)=f_{i}\left(x_{i}\right)$. Then after permuting the colors in f_{2} so that $f_{2}\left(x_{2}\right)=f_{1}\left(x_{1}\right)$, we get that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of $G^{*}-y_{1} y_{2}$.

Now we show that G^{*} is k-critical.
Suppose G^{*} has a $(k-1)$-coloring f. Since $\left.f\right|_{v\left(G_{1}\right)}$ is NOT a $(k-1)$-coloring of $G_{1}, f\left(x^{*}\right)=f\left(y_{1}\right)$. Similarly, $f\left(x^{*}\right)=f\left(y_{2}\right)$. But then $f\left(y_{1}\right)=f\left(y_{2}\right)$, a contradiction.

Consider $G^{*}-y_{1} y_{2}$. Since G_{1} and G_{2} are k-critical, for $i=1,2$, $G_{i}-x_{i} y_{i}$ has a $(k-1)$-coloring f, and $f_{i}\left(y_{i}\right)=f_{i}\left(x_{i}\right)$. Then after permuting the colors in f_{2} so that $f_{2}\left(x_{2}\right)=f_{1}\left(x_{1}\right)$, we get that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of $G^{*}-y_{1} y_{2}$.

Finally, let $u v$ be any other edge of G^{*}. By symmetry, we may assume $\{u, v\} \subset V\left(G_{1}\right)$ (or one of them is x^{*}). Then $G_{1}-u v$ has a $(k-1)$-coloring f_{1} and $G_{2}-x_{2} y_{2}$ has a $(k-1)$-coloring f_{2}. After permuting the colors in f_{2} so that $f_{2}\left(x_{2}\right)=f_{1}\left(x_{1}\right)$, we get that $f_{1} \cup f_{2}$ is a $(k-1)$-coloring of $G^{*}-u v$.

Definitions

Mycielski's Construction: $M_{3}=C_{5}$. Suppose M_{k} is a triangle-free graph with $\chi\left(M_{k}\right)=k$ and
$V\left(M_{k}\right)=V_{k}=\left\{v_{1}, \ldots, v_{n_{k}}\right\}$. Let $V_{k}^{\prime}=\left\{u_{1}, \ldots, u_{n_{k}}\right\}$. Then
$V\left(M_{k+1}\right)=V_{k} \cup V_{k}^{\prime} \cup\{w\}, M_{k+1}\left[V_{k}\right]=M_{k}, N_{M_{k+1}}(w)=V_{k}^{\prime}$ and for each $1 \leq j \leq n_{k}, N_{M_{k+1}}\left(u_{j}\right)=N_{M_{k}}\left(v_{j}\right) \cup\{w\}$.

Definitions

Mycielski's Construction: $M_{3}=C_{5}$. Suppose M_{k} is a triangle-free graph with $\chi\left(M_{k}\right)=k$ and
$V\left(M_{k}\right)=V_{k}=\left\{v_{1}, \ldots, v_{n_{k}}\right\}$. Let $V_{k}^{\prime}=\left\{u_{1}, \ldots, u_{n_{k}}\right\}$. Then
$V\left(M_{k+1}\right)=V_{k} \cup V_{k}^{\prime} \cup\{w\}, M_{k+1}\left[V_{k}\right]=M_{k}, N_{M_{k+1}}(w)=V_{k}^{\prime}$ and for each $1 \leq i \leq n_{k}, N_{M_{\llcorner }+1}\left(u_{i}\right)=N_{M_{\iota}}\left(v_{i}\right) \cup\{w\}$.

Theorem 5.7: For every $k \geq 3, M_{k}$ is triangle-free and $\chi\left(M_{k}\right) \geq k$.
Proof. For $k=3$ this is trivial.

Theorem 5.7: For every $k \geq 3, M_{k}$ is triangle-free and $\chi\left(M_{k}\right) \geq k$.

Proof. For $k=3$ this is trivial.
Suppose the theorem holds for all $k \leq k_{0}$, but $\chi\left(M_{k_{0}+1}\right)=k_{0}$. Let f be a k_{0}-coloring of $M_{k_{0}+1}$. We may assume that $f(w)=k_{0}$.

Theorem 5.7: For every $k \geq 3, M_{k}$ is triangle-free and $\chi\left(M_{k}\right) \geq k$.

Proof. For $k=3$ this is trivial.
Suppose the theorem holds for all $k \leq k_{0}$, but $\chi\left(M_{k_{0}+1}\right)=k_{0}$. Let f be a k_{0}-coloring of $M_{k_{0}+1}$. We may assume that $f(w)=k_{0}$.

Then color k_{0} is not used on $V_{k_{0}}^{\prime}$. Let $W=\left\{v_{i_{1}}, \ldots, v_{i_{s}}\right\}$ be the set of the vertices in $V_{k_{0}}$ colored with k_{0}. We will recolor them: for each $1 \leq j \leq s$, recolor $v_{i_{j}}$ with $f\left(u_{i_{j}}\right)$. Then color k_{0} is not used in the new coloring f^{\prime} of M_{k}.

Theorem 5.7: For every $k \geq 3, M_{k}$ is triangle-free and $\chi\left(M_{k}\right) \geq k$.

Proof. For $k=3$ this is trivial.
Suppose the theorem holds for all $k \leq k_{0}$, but $\chi\left(M_{k_{0}+1}\right)=k_{0}$. Let f be a k_{0}-coloring of $M_{k_{0}+1}$. We may assume that $f(w)=k_{0}$.

Then color k_{0} is not used on $V_{k_{0}}^{\prime}$. Let $W=\left\{v_{i_{1}}, \ldots, v_{i_{s}}\right\}$ be the set of the vertices in $V_{k_{0}}$ colored with k_{0}. We will recolor them: for each $1 \leq j \leq s$, recolor $v_{i_{j}}$ with $f\left(u_{i_{j}}\right)$. Then color k_{0} is not used in the new coloring f^{\prime} of M_{k}.

We claim that

$$
\begin{equation*}
f^{\prime}\left(v_{i}\right) \neq f^{\prime}\left(v_{j}\right) \quad \text { for each edge } v_{i} v_{j} \in E\left(M_{k_{0}}\right) \tag{1}
\end{equation*}
$$

Indeed, suppose $f^{\prime}\left(v_{i}\right)=f^{\prime}\left(v_{j}\right)$. If $f\left(v_{i}\right) \neq k_{0}$ and $f\left(v_{j}\right) \neq k_{0}$, then the colors of v_{i} and v_{j} did not change, but $f\left(v_{i}\right) \neq f\left(v_{j}\right)$, a contradiction. If $f\left(v_{i}\right)=k_{0}=f\left(v_{j}\right)$, then v_{i} and v_{j} cannot be adjacent.

Indeed, suppose $f^{\prime}\left(v_{i}\right)=f^{\prime}\left(v_{j}\right)$. If $f\left(v_{i}\right) \neq k_{0}$ and $f\left(v_{j}\right) \neq k_{0}$, then the colors of v_{i} and v_{j} did not change, but $f\left(v_{i}\right) \neq f\left(v_{j}\right)$, a contradiction. If $f\left(v_{i}\right)=k_{0}=f\left(v_{j}\right)$, then v_{i} and v_{j} cannot be adjacent.
So, we may assume $f\left(v_{i}\right)=k_{0}$ and $f\left(v_{j}\right) \neq k_{0}$. This means $f\left(u_{i}\right)=f\left(v_{j}\right)$. But $u_{i} v_{j} \in E\left(M_{k_{0}+1}\right)$, a contradiction.

Indeed, suppose $f^{\prime}\left(v_{i}\right)=f^{\prime}\left(v_{j}\right)$. If $f\left(v_{i}\right) \neq k_{0}$ and $f\left(v_{j}\right) \neq k_{0}$, then the colors of v_{i} and v_{j} did not change, but $f\left(v_{i}\right) \neq f\left(v_{j}\right)$, a contradiction. If $f\left(v_{i}\right)=k_{0}=f\left(v_{j}\right)$, then v_{i} and v_{j} cannot be adjacent.
So, we may assume $f\left(v_{i}\right)=k_{0}$ and $f\left(v_{j}\right) \neq k_{0}$. This means $f\left(u_{i}\right)=f\left(v_{j}\right)$. But $u_{i} v_{j} \in E\left(M_{k_{0}+1}\right)$, a contradiction.

This shows that the difference $\chi(G)-\omega(G)$ and the ratio $\frac{\chi(G)}{\omega(G)}$ can be arbitrarily large.

Brooks' Theorem

Recall that $\chi\left(K_{n}\right)=n=\Delta\left(K_{n}\right)+1$ and
$\chi\left(C_{2 t+1}\right)=3=\Delta\left(C_{2 t+1}\right)+1$.

Brooks' Theorem

Recall that $\chi\left(K_{n}\right)=n=\Delta\left(K_{n}\right)+1$ and
$\chi\left(C_{2 t+1}\right)=3=\Delta\left(C_{2 t+1}\right)+1$.
Theorem 5.8 (Brooks): Let $k \geq 3$ and $\Delta(G) \leq k$. If G does not contain K_{k+1}, then $\chi(G) \leq k$.

Brooks' Theorem

Recall that $\chi\left(K_{n}\right)=n=\Delta\left(K_{n}\right)+1$ and
$\chi\left(C_{2 t+1}\right)=3=\Delta\left(C_{2 t+1}\right)+1$.
Theorem 5.8 (Brooks): Let $k \geq 3$ and $\Delta(G) \leq k$. If G does not contain K_{k+1}, then $\chi(G) \leq k$.

Proof. Fix $k \geq 3$. Suppose the theorem does not hold for this k. Choose a counter-example G with the smallest $|V(G)|+|E(G)|$. By the minimality, G is $(k+1)$-critical. So, by Theorem 5.6, G is 2-connected and k-regular. Let $n=|V(G)|$.

Brooks' Theorem

Recall that $\chi\left(K_{n}\right)=n=\Delta\left(K_{n}\right)+1$ and
$\chi\left(C_{2 t+1}\right)=3=\Delta\left(C_{2 t+1}\right)+1$.
Theorem 5.8 (Brooks): Let $k \geq 3$ and $\Delta(G) \leq k$. If G does not contain K_{k+1}, then $\chi(G) \leq k$.

Proof. Fix $k \geq 3$. Suppose the theorem does not hold for this k. Choose a counter-example G with the smallest $|V(G)|+|E(G)|$. By the minimality, G is $(k+1)$-critical. So, by Theorem 5.6, G is 2-connected and k-regular. Let $n=|V(G)|$.

Since G is not a complete graph, it has vertices v_{1}, v_{2}, v_{3} such that $v_{1} v_{2}, v_{2} v_{3} \in E(G)$ and $v_{1} v_{3} \notin E(G)$.

Consider the following construction of a path P. Steps 1,2,3: Let $x_{1}=v_{1}, x_{2}=v_{2}$ and $x_{3}=v_{3}$.

Consider the following construction of a path P. Steps 1,2,3: Let $x_{1}=v_{1}, x_{2}=v_{2}$ and $x_{3}=v_{3}$.

Step i for $i \geq 4$: If x_{i-1} has a neighbor $v \notin\left\{x_{1}, \ldots, x_{i-1}\right\}$, then let $x_{i}=v$. If not, let $h=i-1, P=x_{1}, \ldots, x_{h}$ and stop.

Consider the following construction of a path P. Steps 1,2,3: Let $x_{1}=v_{1}, x_{2}=v_{2}$ and $x_{3}=v_{3}$.

Step i for $i \geq 4$: If x_{i-1} has a neighbor $v \notin\left\{x_{1}, \ldots, x_{i-1}\right\}$, then let $x_{i}=v$. If not, let $h=i-1, P=x_{1}, \ldots, x_{h}$ and stop.

Case 1: $h \leq n-1$. Let j be the smallest index s.t. $x_{j} x_{h} \in E(G)$. Then G has cycle $C=x_{j}, x_{j+1}, \ldots, x_{h}, x_{j}$, and $N\left(x_{h}\right) \subseteq V(C)$.

Consider the following construction of a path P.
Steps 1,2,3: Let $x_{1}=v_{1}, x_{2}=v_{2}$ and $x_{3}=v_{3}$.
Step i for $i \geq 4$: If x_{i-1} has a neighbor $v \notin\left\{x_{1}, \ldots, x_{i-1}\right\}$, then let $x_{i}=v$. If not, let $h=i-1, P=x_{1}, \ldots, x_{h}$ and stop.

Case 1: $h \leq n-1$. Let j be the smallest index s.t. $x_{j} x_{h} \in E(G)$. Then G has cycle $C=x_{j}, x_{j+1}, \ldots, x_{h}, x_{j}$, and $N\left(x_{h}\right) \subseteq V(C)$.

Since G is connected, we can cyclically rename the vertices of C as $y_{j}, y_{j+1}, \ldots, y_{h}, y_{j}$ so that $N\left(y_{h}\right) \subseteq V(C)$ and y_{j} has a neighbor y_{j}^{\prime} outside of C.

Since G is $(k+1)$-critical, graph $G^{\prime}=G-V(C)$ has a coloring f with colors $1, \ldots, k$. We may assume that $f\left(y_{j}^{\prime}\right)=1$.

We now extend f greedily to $V(C)$ using the order $y_{h}, y_{h-1}, \ldots, y_{j}$ of the vertices of C. In particular, $f\left(y_{h}\right)=1$.

We claim that no more than k colors will be used: If $i>j$, then the neighbor y_{i-1} of y_{i} is not colored, and hence y_{i} has at most $k-1$ forbidden colors. If $i=j$, then y_{i} has two neighbors, y_{h} and y_{j}^{\prime}, of the same color. This contradicts the choice of G.

We now extend f greedily to $V(C)$ using the order $y_{h}, y_{h-1}, \ldots, y_{j}$ of the vertices of C. In particular, $f\left(y_{h}\right)=1$.

We claim that no more than k colors will be used: If $i>j$, then the neighbor y_{i-1} of y_{i} is not colored, and hence y_{i} has at most $k-1$ forbidden colors. If $i=j$, then y_{i} has two neighbors, y_{n} and y_{j}^{\prime}, of the same color. This contradicts the choice of G.
Case 2: $h=n$, i.e. $P=x_{1}, \ldots, x_{n}$. Since $k \geq 3, x_{2}$ has a neighbor x_{j} for some $j \geq 4$. Consider a greedy coloring of G w.r.t. order

$$
x_{1}, x_{3}, x_{4}, \ldots, x_{j-1}, x_{n}, x_{n-1}, \ldots, x_{j}, x_{2} .
$$

In this process, every $x_{i} \neq x_{2}$ at the moment of coloring has an uncolored neighbor, and hence gets a color $m \leq k$.

We now extend f greedily to $V(C)$ using the order $y_{h}, y_{h-1}, \ldots, y_{j}$ of the vertices of C. In particular, $f\left(y_{h}\right)=1$.

We claim that no more than k colors will be used: If $i>j$, then the neighbor y_{i-1} of y_{i} is not colored, and hence y_{i} has at most $k-1$ forbidden colors. If $i=j$, then y_{i} has two neighbors, y_{h} and y_{j}^{\prime}, of the same color. This contradicts the choice of G.

Case 2: $h=n$, i.e. $P=x_{1}, \ldots, x_{n}$. Since $k \geq 3, x_{2}$ has a neighbor x_{j} for some $j \geq 4$. Consider a greedy coloring of G w.r.t. order

$$
x_{1}, x_{3}, x_{4}, \ldots, x_{j-1}, x_{n}, x_{n-1}, \ldots, x_{j}, x_{2} .
$$

In this process, every $x_{i} \neq x_{2}$ at the moment of coloring has an uncolored neighbor, and hence gets a color $m \leq k$.

On the other hand, x_{2} has two neighbors, x_{1} and x_{3}, of the same color. This proves the theorem.

A natural question: Can we improve the bound on $\chi(G)$ if G is triangle-free?

A natural question: Can we improve the bound on $\chi(G)$ if G is triangle-free?

Theorem 5.9. If $\Delta(G) \leq 7$ and $\omega(G) \leq 3$, then $\chi(G) \leq 6$.
Proof: Consider a partition $V(G)=V_{1} \cup V_{2}$ of $V(G)$

$$
\begin{equation*}
\text { with the maximum }\left|E_{G}\left(V_{1}, V_{2}\right)\right| \text {. } \tag{2}
\end{equation*}
$$

A natural question: Can we improve the bound on $\chi(G)$ if G is triangle-free?

Theorem 5.9. If $\Delta(G) \leq 7$ and $\omega(G) \leq 3$, then $\chi(G) \leq 6$.
Proof: Consider a partition $V(G)=V_{1} \cup V_{2}$ of $V(G)$

$$
\begin{equation*}
\text { with the maximum }\left|E_{G}\left(V_{1}, V_{2}\right)\right| \text {. } \tag{2}
\end{equation*}
$$

For $i=1,2$, let $G_{i}=G\left[V_{i}\right]$. We claim that

$$
\begin{equation*}
\text { for } i=1,2, \quad \Delta\left(G_{i}\right) \leq 3 . \tag{3}
\end{equation*}
$$

A natural question: Can we improve the bound on $\chi(G)$ if G is triangle-free?

Theorem 5.9. If $\Delta(G) \leq 7$ and $\omega(G) \leq 3$, then $\chi(G) \leq 6$.
Proof: Consider a partition $V(G)=V_{1} \cup V_{2}$ of $V(G)$

$$
\begin{equation*}
\text { with the maximum }\left|E_{G}\left(V_{1}, V_{2}\right)\right| \text {. } \tag{2}
\end{equation*}
$$

For $i=1,2$, let $G_{i}=G\left[V_{i}\right]$. We claim that

$$
\begin{equation*}
\text { for } i=1,2, \quad \Delta\left(G_{i}\right) \leq 3 \tag{3}
\end{equation*}
$$

Indeed, if say $v \in V_{1}$ has $d_{G_{1}} \geq 4$, then the partition ($V_{1}-v, V_{2}+v$) has more edges between the sets, a contradiction to (2). This proves (3).

A natural question: Can we improve the bound on $\chi(G)$ if G is triangle-free?

Theorem 5.9. If $\Delta(G) \leq 7$ and $\omega(G) \leq 3$, then $\chi(G) \leq 6$.
Proof: Consider a partition $V(G)=V_{1} \cup V_{2}$ of $V(G)$

$$
\begin{equation*}
\text { with the maximum }\left|E_{G}\left(V_{1}, V_{2}\right)\right| \text {. } \tag{2}
\end{equation*}
$$

For $i=1,2$, let $G_{i}=G\left[V_{i}\right]$. We claim that

$$
\begin{equation*}
\text { for } i=1,2, \quad \Delta\left(G_{i}\right) \leq 3 . \tag{3}
\end{equation*}
$$

Indeed, if say $v \in V_{1}$ has $d_{G_{1}} \geq 4$, then the partition ($V_{1}-v, V_{2}+v$) has more edges between the sets, a contradiction to (2). This proves (3).

Then by Brooks' Theorem, $\chi\left(G_{1}\right) \leq 3$ and $\chi\left(G_{2}\right) \leq 3$. Hence, $\chi(G) \leq 3+3=6$.

