Graph coloring. Part 4

Lecture 35

For $k \ge 1$, a graph *G* is *k*-critical, if $\chi(G) = k$, but for each proper subgraph *G'* of *G*,

 $\chi(G') \leq k-1.$

Theorem 5.6. Let $k \ge 3$ and *G* be a *k*-critical graph. Then (a) $\kappa(G) \ge 2$; (b) $\kappa'(G) \ge k - 1$. Moreover, for each $k \ge 3$ there are infinitely many *k*-critical graphs with connectivity exactly 2.

Proof of the "Moreover" part: We describe the Hájos Construction that creates from two k-critical graphs a new k-critical graph with connectivity exactly 2.

(日) (日) (日) (日) (日) (日) (日)

1) Take two disjoint *k*-critical graphs G_1 and G_2 .

2) Choose an edge x_1y_1 in G_1 and an edge x_2y_2 in G_2 .

3) Delete the edges x_1y_1 and x_2y_2 , glue x_2 with x_1 into a new vertex x^* , add edge y_1y_2 . Call new graph G^* .

1) Take two disjoint *k*-critical graphs G_1 and G_2 .

2) Choose an edge x_1y_1 in G_1 and an edge x_2y_2 in G_2 .

3) Delete the edges x_1y_1 and x_2y_2 , glue x_2 with x_1 into a new vertex x^* , add edge y_1y_2 . Call new graph G^* .

・ コット (雪) (小田) (コット 日)

1) Take two disjoint *k*-critical graphs G_1 and G_2 .

2) Choose an edge x_1y_1 in G_1 and an edge x_2y_2 in G_2 .

3) Delete the edges x_1y_1 and x_2y_2 , glue x_2 with x_1 into a new vertex x^* , add edge y_1y_2 . Call new graph G^* .

By construction, set $\{x^*, y_1\}$ is separating in G^* . So $\kappa(G^*) = 2$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Now we show that *G*^{*} is *k*-critical.

Suppose G^* has a (k - 1)-coloring f. Since $f|_{V(G_1)}$ is NOT a (k - 1)-coloring of G_1 , $f(x^*) = f(y_1)$. Similarly, $f(x^*) = f(y_2)$. But then $f(y_1) = f(y_2)$, a contradiction. Now we show that *G*^{*} is *k*-critical.

Suppose G^* has a (k - 1)-coloring f. Since $f |_{V(G_1)}$ is NOT a (k - 1)-coloring of G_1 , $f(x^*) = f(y_1)$. Similarly, $f(x^*) = f(y_2)$. But then $f(y_1) = f(y_2)$, a contradiction.

Consider $G^* - y_1 y_2$. Since G_1 and G_2 are *k*-critical, for i = 1, 2, $G_i - x_i y_i$ has a (k - 1)-coloring *f*, and $f_i(y_i) = f_i(x_i)$. Then after permuting the colors in f_2 so that $f_2(x_2) = f_1(x_1)$, we get that $f_1 \cup f_2$ is a (k - 1)-coloring of $G^* - y_1 y_2$.

Now we show that *G*^{*} is *k*-critical.

Suppose G^* has a (k - 1)-coloring f. Since $f |_{V(G_1)}$ is NOT a (k - 1)-coloring of G_1 , $f(x^*) = f(y_1)$. Similarly, $f(x^*) = f(y_2)$. But then $f(y_1) = f(y_2)$, a contradiction.

Consider $G^* - y_1 y_2$. Since G_1 and G_2 are *k*-critical, for i = 1, 2, $G_i - x_i y_i$ has a (k - 1)-coloring *f*, and $f_i(y_i) = f_i(x_i)$. Then after permuting the colors in f_2 so that $f_2(x_2) = f_1(x_1)$, we get that $f_1 \cup f_2$ is a (k - 1)-coloring of $G^* - y_1 y_2$.

Finally, let uv be any other edge of G^* . By symmetry, we may assume $\{u, v\} \subset V(G_1)$ (or one of them is x^*). Then $G_1 - uv$ has a (k - 1)-coloring f_1 and $G_2 - x_2y_2$ has a (k - 1)-coloring f_2 . After permuting the colors in f_2 so that $f_2(x_2) = f_1(x_1)$, we get that $f_1 \cup f_2$ is a (k - 1)-coloring of $G^* - uv$.

Definitions

Mycielski's Construction: $M_3 = C_5$. Suppose M_k is a triangle-free graph with $\chi(M_k) = k$ and $V(M_k) = V_k = \{v_1, ..., v_{n_k}\}$. Let $V'_k = \{u_1, ..., u_{n_k}\}$. Then $V(M_{k+1}) = V_k \cup V'_k \cup \{w\}, M_{k+1}[V_k] = M_k, N_{M_{k+1}}(w) = V'_k$ and for each $1 \le j \le n_k, N_{M_{k+1}}(u_j) = N_{M_k}(v_j) \cup \{w\}$.

Definitions

Mycielski's Construction: $M_3 = C_5$. Suppose M_k is a triangle-free graph with $\chi(M_k) = k$ and $V(M_k) = V_k = \{v_1, ..., v_{n_k}\}$. Let $V'_k = \{u_1, ..., u_{n_k}\}$. Then $V(M_{k+1}) = V_k \cup V'_k \cup \{w\}, M_{k+1}[V_k] = M_k, N_{M_{k+1}}(w) = V'_k$ and for each $1 \le j \le n_k, N_{M_{k+1}}(u_i) = N_{M_k}(v_i) \cup \{w\}$.

Proof. For k = 3 this is trivial.

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all $k \le k_0$, but $\chi(M_{k_0+1}) = k_0$. Let *f* be a k_0 -coloring of M_{k_0+1} . We may assume that $f(w) = k_0$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all $k \le k_0$, but $\chi(M_{k_0+1}) = k_0$. Let *f* be a k_0 -coloring of M_{k_0+1} . We may assume that $f(w) = k_0$.

Then color k_0 is not used on V'_{k_0} . Let $W = \{v_{i_1}, \ldots, v_{i_s}\}$ be the set of the vertices in V_{k_0} colored with k_0 . We will recolor them: for each $1 \le j \le s$, recolor v_{i_j} with $f(u_{i_j})$. Then color k_0 is not used in the new coloring f' of M_k .

(日) (日) (日) (日) (日) (日) (日)

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all $k \le k_0$, but $\chi(M_{k_0+1}) = k_0$. Let *f* be a k_0 -coloring of M_{k_0+1} . We may assume that $f(w) = k_0$.

Then color k_0 is not used on V'_{k_0} . Let $W = \{v_{i_1}, \ldots, v_{i_s}\}$ be the set of the vertices in V_{k_0} colored with k_0 . We will recolor them: for each $1 \le j \le s$, recolor v_{i_j} with $f(u_{i_j})$. Then color k_0 is not used in the new coloring f' of M_k .

We claim that

 $f'(v_i) \neq f'(v_j)$ for each edge $v_i v_j \in E(M_{k_0})$. (1)

(日)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)

Indeed, suppose $f'(v_i) = f'(v_j)$. If $f(v_i) \neq k_0$ and $f(v_j) \neq k_0$, then the colors of v_i and v_j did not change, but $f(v_i) \neq f(v_j)$, a contradiction. If $f(v_i) = k_0 = f(v_j)$, then v_i and v_j cannot be adjacent.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Indeed, suppose $f'(v_i) = f'(v_j)$. If $f(v_i) \neq k_0$ and $f(v_j) \neq k_0$, then the colors of v_i and v_j did not change, but $f(v_i) \neq f(v_j)$, a contradiction. If $f(v_i) = k_0 = f(v_j)$, then v_i and v_j cannot be adjacent.

(ロ) (同) (三) (三) (三) (○) (○)

So, we may assume $f(v_i) = k_0$ and $f(v_j) \neq k_0$. This means $f(u_i) = f(v_j)$. But $u_i v_j \in E(M_{k_0+1})$, a contradiction.

Indeed, suppose $f'(v_i) = f'(v_j)$. If $f(v_i) \neq k_0$ and $f(v_j) \neq k_0$, then the colors of v_i and v_j did not change, but $f(v_i) \neq f(v_j)$, a contradiction. If $f(v_i) = k_0 = f(v_j)$, then v_i and v_j cannot be adjacent.

So, we may assume $f(v_i) = k_0$ and $f(v_j) \neq k_0$. This means $f(u_i) = f(v_j)$. But $u_i v_j \in E(M_{k_0+1})$, a contradiction.

This shows that the difference $\chi(G) - \omega(G)$ and the ratio $\frac{\chi(G)}{\omega(G)}$ can be arbitrarily large.

(日) (日) (日) (日) (日) (日) (日)

Recall that $\chi(K_n) = n = \Delta(K_n) + 1$ and $\chi(C_{2t+1}) = 3 = \Delta(C_{2t+1}) + 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recall that $\chi(K_n) = n = \Delta(K_n) + 1$ and $\chi(C_{2t+1}) = 3 = \Delta(C_{2t+1}) + 1$.

Theorem 5.8 (Brooks): Let $k \ge 3$ and $\Delta(G) \le k$. If *G* does not contain K_{k+1} , then $\chi(G) \le k$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Recall that $\chi(K_n) = n = \Delta(K_n) + 1$ and $\chi(C_{2t+1}) = 3 = \Delta(C_{2t+1}) + 1$.

Theorem 5.8 (Brooks): Let $k \ge 3$ and $\Delta(G) \le k$. If *G* does not contain K_{k+1} , then $\chi(G) \le k$.

Proof. Fix $k \ge 3$. Suppose the theorem does not hold for this k. Choose a counter-example G with the smallest |V(G)| + |E(G)|. By the minimality, G is (k + 1)-critical. So, by Theorem 5.6, G is 2-connected and k-regular. Let n = |V(G)|.

(日) (日) (日) (日) (日) (日) (日)

Recall that $\chi(K_n) = n = \Delta(K_n) + 1$ and $\chi(C_{2t+1}) = 3 = \Delta(C_{2t+1}) + 1$.

Theorem 5.8 (Brooks): Let $k \ge 3$ and $\Delta(G) \le k$. If *G* does not contain K_{k+1} , then $\chi(G) \le k$.

Proof. Fix $k \ge 3$. Suppose the theorem does not hold for this k. Choose a counter-example G with the smallest |V(G)| + |E(G)|. By the minimality, G is (k + 1)-critical. So, by Theorem 5.6, G is 2-connected and k-regular. Let n = |V(G)|.

Since *G* is not a complete graph, it has vertices v_1 , v_2 , v_3 such that v_1v_2 , $v_2v_3 \in E(G)$ and $v_1v_3 \notin E(G)$.

(日) (日) (日) (日) (日) (日) (日)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Step *i* for $i \ge 4$: If x_{i-1} has a neighbor $v \notin \{x_1, \ldots, x_{i-1}\}$, then let $x_i = v$. If not, let h = i - 1, $P = x_1, \ldots, x_h$ and stop.

(ロ) (同) (三) (三) (三) (○) (○)

Step *i* for $i \ge 4$: If x_{i-1} has a neighbor $v \notin \{x_1, \ldots, x_{i-1}\}$, then let $x_i = v$. If not, let h = i - 1, $P = x_1, \ldots, x_h$ and stop.

Case 1: $h \le n - 1$. Let *j* be the smallest index s.t. $x_j x_h \in E(G)$. Then *G* has cycle $C = x_j, x_{j+1}, \dots, x_h, x_j$, and $N(x_h) \subseteq V(C)$.

Step *i* for $i \ge 4$: If x_{i-1} has a neighbor $v \notin \{x_1, \ldots, x_{i-1}\}$, then let $x_i = v$. If not, let h = i - 1, $P = x_1, \ldots, x_h$ and stop.

Case 1: $h \le n - 1$. Let *j* be the smallest index s.t. $x_j x_h \in E(G)$. Then *G* has cycle $C = x_j, x_{j+1}, \dots, x_h, x_j$, and $N(x_h) \subseteq V(C)$.

Since *G* is connected, we can cyclically rename the vertices of *C* as $y_j, y_{j+1}, \ldots, y_h, y_j$ so that $N(y_h) \subseteq V(C)$ and y_j has a neighbor y'_i outside of *C*.

Since G is (k + 1)-critical, graph G' = G - V(C) has a coloring f with colors $1, \ldots, k$. We may assume that $f(y'_i) = 1$.

We now extend *f* greedily to V(C) using the order $y_h, y_{h-1}, \ldots, y_j$ of the vertices of *C*. In particular, $f(y_h) = 1$.

We claim that no more than *k* colors will be used: If i > j, then the neighbor y_{i-1} of y_i is not colored, and hence y_i has at most k - 1 forbidden colors. If i = j, then y_i has two neighbors, y_h and y'_i , of the same color. This contradicts the choice of *G*.

We now extend *f* greedily to V(C) using the order $y_h, y_{h-1}, \ldots, y_j$ of the vertices of *C*. In particular, $f(y_h) = 1$.

We claim that no more than *k* colors will be used: If i > j, then the neighbor y_{i-1} of y_i is not colored, and hence y_i has at most k - 1 forbidden colors. If i = j, then y_i has two neighbors, y_h and y'_i , of the same color. This contradicts the choice of *G*.

Case 2: h = n, i.e. $P = x_1, ..., x_n$. Since $k \ge 3$, x_2 has a neighbor x_j for some $j \ge 4$. Consider a greedy coloring of G w.r.t. order

 $x_1, x_3, x_4, \ldots, x_{j-1}, x_n, x_{n-1}, \ldots, x_j, x_2.$

In this process, every $x_i \neq x_2$ at the moment of coloring has an uncolored neighbor, and hence gets a color $m \leq k$.

We now extend *f* greedily to V(C) using the order $y_h, y_{h-1}, \ldots, y_j$ of the vertices of *C*. In particular, $f(y_h) = 1$.

We claim that no more than *k* colors will be used: If i > j, then the neighbor y_{i-1} of y_i is not colored, and hence y_i has at most k - 1 forbidden colors. If i = j, then y_i has two neighbors, y_h and y'_i , of the same color. This contradicts the choice of *G*.

Case 2: h = n, i.e. $P = x_1, ..., x_n$. Since $k \ge 3$, x_2 has a neighbor x_j for some $j \ge 4$. Consider a greedy coloring of G w.r.t. order

 $x_1, x_3, x_4, \ldots, x_{j-1}, x_n, x_{n-1}, \ldots, x_j, x_2.$

In this process, every $x_i \neq x_2$ at the moment of coloring has an uncolored neighbor, and hence gets a color $m \leq k$.

On the other hand, x_2 has two neighbors, x_1 and x_3 , of the same color. This proves the theorem.

Theorem 5.9. If $\Delta(G) \leq 7$ and $\omega(G) \leq 3$, then $\chi(G) \leq 6$.

Proof: Consider a partition $V(G) = V_1 \cup V_2$ of V(G)

with the maximum $|E_G(V_1, V_2)|$. (2)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 5.9. If $\Delta(G) \le 7$ and $\omega(G) \le 3$, then $\chi(G) \le 6$. Proof: Consider a partition $V(G) = V_1 \cup V_2$ of V(G)

with the maximum $|E_G(V_1, V_2)|$. (2)

For i = 1, 2, let $G_i = G[V_i]$. We claim that

for
$$i = 1, 2, \quad \Delta(G_i) \le 3.$$
 (3)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 5.9. If $\Delta(G) \le 7$ and $\omega(G) \le 3$, then $\chi(G) \le 6$. Proof: Consider a partition $V(G) = V_1 \cup V_2$ of V(G)

with the maximum $|E_G(V_1, V_2)|$. (2)

For i = 1, 2, let $G_i = G[V_i]$. We claim that

for
$$i = 1, 2, \quad \Delta(G_i) \le 3.$$
 (3)

Indeed, if say $v \in V_1$ has $d_{G_1} \ge 4$, then the partition $(V_1 - v, V_2 + v)$ has more edges between the sets, a contradiction to (2). This proves (3).

Theorem 5.9. If $\Delta(G) \le 7$ and $\omega(G) \le 3$, then $\chi(G) \le 6$. Proof: Consider a partition $V(G) = V_1 \cup V_2$ of V(G)

with the maximum $|E_G(V_1, V_2)|$. (2)

For i = 1, 2, let $G_i = G[V_i]$. We claim that

for
$$i = 1, 2, \quad \Delta(G_i) \le 3.$$
 (3)

Indeed, if say $v \in V_1$ has $d_{G_1} \ge 4$, then the partition $(V_1 - v, V_2 + v)$ has more edges between the sets, a contradiction to (2). This proves (3).

Then by Brooks' Theorem, $\chi(G_1) \leq 3$ and $\chi(G_2) \leq 3$. Hence, $\chi(G) \leq 3 + 3 = 6$.