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For k ≥ 1, a graph G is k -critical, if χ(G) = k , but for each
proper subgraph G′ of G,

χ(G′) ≤ k − 1.

Theorem 5.6. Let k ≥ 3 and G be a k -critical graph. Then
(a) κ(G) ≥ 2;
(b) κ′(G) ≥ k − 1.
Moreover, for each k ≥ 3 there are infinitely many k -critical
graphs with connectivity exactly 2.

Proof of the ”Moreover” part: We describe the Hájos
Construction that creates from two k -critical graphs a new
k -critical graph with connectivity exactly 2.



1) Take two disjoint k -critical graphs G1 and G2.
2) Choose an edge x1y1 in G1 and an edge x2y2 in G2.
3) Delete the edges x1y1 and x2y2, glue x2 with x1 into a new
vertex x∗, add edge y1y2. Call new graph G∗.

By construction, set {x∗, y1} is separating in G∗. So κ(G∗) = 2.
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Now we show that G∗ is k -critical.
Suppose G∗ has a (k − 1)-coloring f . Sincef |V (G1) is NOT a
(k − 1)-coloring of G1, f (x∗) = f (y1). Similarly, f (x∗) = f (y2).
But then f (y1) = f (y2), a contradiction.

Consider G∗ − y1y2. Since G1 and G2 are k -critical, for i = 1,2,
Gi − xiyi has a (k − 1)-coloring f , and fi(yi) = fi(xi). Then after
permuting the colors in f2 so that f2(x2) = f1(x1), we get that
f1 ∪ f2 is a (k − 1)-coloring of G∗ − y1y2.

Finally, let uv be any other edge of G∗. By symmetry, we may
assume {u, v} ⊂ V (G1) (or one of them is x∗). Then G1 − uv
has a (k − 1)-coloring f1 and G2 − x2y2 has a (k − 1)-coloring
f2. After permuting the colors in f2 so that f2(x2) = f1(x1), we
get that f1 ∪ f2 is a (k − 1)-coloring of G∗ − uv .
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Definitions

Mycielski’s Construction: M3 = C5. Suppose Mk is a
triangle-free graph with χ(Mk ) = k and
V (Mk ) = Vk = {v1, ..., vnk}. Let V ′

k = {u1, ...,unk}. Then
V (Mk+1) = Vk ∪ V ′

k ∪ {w}, Mk+1[Vk ] = Mk , NMk+1(w) = V ′
k and

for each 1 ≤ j ≤ nk , NMk+1(uj) = NMk (vj) ∪ {w}.
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Theorem 5.7: For every k ≥ 3, Mk is triangle-free and
χ(Mk ) ≥ k .

Proof. For k = 3 this is trivial.

Suppose the theorem holds for all k ≤ k0, but χ(Mk0+1) = k0.
Let f be a k0-coloring of Mk0+1. We may assume that f (w) = k0.

Then color k0 is not used on V ′
k0

. Let W = {vi1 , . . . , vis} be the
set of the vertices in Vk0 colored with k0. We will recolor them:
for each 1 ≤ j ≤ s, recolor vij with f (uij ). Then color k0 is not
used in the new coloring f ′ of Mk .

We claim that

f ′(vi) ̸= f ′(vj) for each edge vivj ∈ E(Mk0). (1)
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Indeed, suppose f ′(vi) = f ′(vj). If f (vi) ̸= k0 and f (vj) ̸= k0, then
the colors of vi and vj did not change, but f (vi) ̸= f (vj), a
contradiction. If f (vi) = k0 = f (vj), then vi and vj cannot be
adjacent.

So, we may assume f (vi) = k0 and f (vj) ̸= k0. This means
f (ui) = f (vj). But uivj ∈ E(Mk0+1), a contradiction.

This shows that the difference χ(G)− ω(G) and the ratio χ(G)
ω(G)

can be arbitrarily large.
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Brooks’ Theorem
Recall that χ(Kn) = n = ∆(Kn) + 1 and
χ(C2t+1) = 3 = ∆(C2t+1) + 1.

Theorem 5.8 (Brooks): Let k ≥ 3 and ∆(G) ≤ k . If G does not
contain Kk+1, then χ(G) ≤ k .

Proof. Fix k ≥ 3. Suppose the theorem does not hold for this k .
Choose a counter-example G with the smallest
|V (G)|+ |E(G)|. By the minimality, G is (k + 1)-critical. So, by
Theorem 5.6, G is 2-connected and k -regular. Let n = |V (G)|.

Since G is not a complete graph, it has vertices v1, v2, v3 such
that v1v2, v2v3 ∈ E(G) and v1v3 /∈ E(G).
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Consider the following construction of a path P.
Steps 1,2,3: Let x1 = v1, x2 = v2 and x3 = v3.

Step i for i ≥ 4: If xi−1 has a neighbor v /∈ {x1, . . . , xi−1}, then
let xi = v . If not, let h = i − 1, P = x1, . . . , xh and stop.

Case 1: h ≤ n − 1. Let j be the smallest index s.t. xjxh ∈ E(G).
Then G has cycle C = xj , xj+1, . . . , xh, xj , and N(xh) ⊆ V (C).

Since G is connected, we can cyclically rename the vertices of
C as yj , yj+1, . . . , yh, yj so that N(yh) ⊆ V (C) and yj has a
neighbor y ′

j outside of C.

Since G is (k + 1)-critical, graph G′ = G − V (C) has a coloring
f with colors 1, . . . , k . We may assume that f (y ′

j ) = 1.
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We now extend f greedily to V (C) using the order
yh, yh−1, . . . , yj of the vertices of C. In particular, f (yh) = 1.

We claim that no more than k colors will be used: If i > j , then
the neighbor yi−1 of yi is not colored, and hence yi has at most
k − 1 forbidden colors. If i = j , then yi has two neighbors, yh
and y ′

j , of the same color. This contradicts the choice of G.

Case 2: h = n, i.e. P = x1, . . . , xn. Since k ≥ 3, x2 has a
neighbor xj for some j ≥ 4. Consider a greedy coloring of G
w.r.t. order

x1, x3, x4, . . . , xj−1, xn, xn−1, . . . , xj , x2.

In this process, every xi ̸= x2 at the moment of coloring has an
uncolored neighbor, and hence gets a color m ≤ k .

On the other hand, x2 has two neighbors, x1 and x3, of the
same color. This proves the theorem.
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A natural question: Can we improve the bound on χ(G) if G is
triangle-free?

Theorem 5.9. If ∆(G) ≤ 7 and ω(G) ≤ 3, then χ(G) ≤ 6.

Proof: Consider a partition V (G) = V1 ∪ V2 of V (G)

with the maximum |EG(V1,V2)|. (2)

For i = 1,2, let Gi = G[Vi ]. We claim that

for i = 1,2, ∆(Gi) ≤ 3. (3)

Indeed, if say v ∈ V1 has dG1 ≥ 4, then the partition
(V1 − v ,V2 + v) has more edges between the sets, a
contradiction to (2). This proves (3).

Then by Brooks’ Theorem, χ(G1) ≤ 3 and χ(G2) ≤ 3. Hence,
χ(G) ≤ 3 + 3 = 6.
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