Graph coloring. Part 5

Lecture 36
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Proof. Fix k > 3. Suppose the theorem does not hold for this k.
Choose a counter-example G with the smallest

\V(G)| + |E(G)|. By the minimality, G is (k + 1)-critical. So, by

Theorem 5.6, G is 2-connected and k-regular. Let n = |V(G)].
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Consider the following construction of a path P.
Steps 1,2,3: Let xy = vq, xo = v» and x3 = va.

Step i for i > 4: If x;_4 has a neighbor v ¢ {x1,...,Xj_1}, then
let x; =v. Ifnot,leth=/i—1, P = Xxq,..., X, and stop.

Case 1: h< n—1. Letj be the smallest index s.t. x;x, € E(G).
Then G has cycle C = xj, Xj1, . . ., X, Xj, and N(xp) € V(C).

Since G is connected, we can cyclically rename the vertices of
Casy, Y1,---,Yn yjsothat N(y,) € V(C) and y; has a
neighbor yj’ outside of C.

Since Gis (k + 1)-critical, graph G' = G — V/(C) has a coloring
f with colors 1, ..., k. We may assume that f(y;) = 1.



We now extend f greedily to V(C) using the order
Yh, Yh—1,- -, y; of the vertices of C. In particular, f(y,) = 1.

We claim that no more than k colors will be used: If i > j, then
the neighbor y;_4 of y; is not colored, and hence y; has at most
k — 1 forbidden colors. If i = j, then y; has two neighbors, y
and yj’, of the same color. This contradicts the choice of G.
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We now extend f greedily to V(C) using the order
Yh, Yh—1,- -, y; of the vertices of C. In particular, f(y,) = 1.

We claim that no more than k colors will be used: If i > j, then
the neighbor y;_4 of y; is not colored, and hence y; has at most
k — 1 forbidden colors. If i = j, then y; has two neighbors, y
and yj’, of the same color. This contradicts the choice of G.

Case2: h=n,i.e. P=xq,...,Xxn. Since k > 3, x> has a
neighbor x; for some j > 4. Consider a greedy coloring of G
w.r.t. order

X1, X3, X4, ..., Xj—1, Xn, Xpn—1, .. ., Xj, Xo.

In this process, every x; # x» at the moment of coloring has an
uncolored neighbor, and hence gets a color m < k.

On the other hand, x> has two neighbors, x; and x3, of the
same color. This proves the theorem.
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Theorem 5.9. If A(G) <7 and w(G) < 3, then x(G) < 6.
Proof: Consider a partition V(G) = V4 U V> of V(G)

with the maximum |Eg( V4, V2)|. (1)
Fori=1,2,let G; = G[V]]. We claim that

fori=1,2, A(G) <3. (2)

Indeed, if say v € V4 has dg, > 4, then the partition
(V4 — v, Vo + v) has more edges between the sets, a
contradiction to (1). This proves (2).

Then by Brooks” Theorem, x(Gy) < 3 and x(Gz) < 3. Hence,
x(G) <3+3=6.
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A (proper) k-edge-coloring of a graph G is a mapping
f:E(G) — {1,...,k} such that

f~1(i) isamatchingforallic {1,... k}. (3)

Observations: 1. If G has a loop, then it has no k-edge-coloring
for any k.

2. Multiple edges DO affect coloring.

3. For each v € V(G), the colors of all incident edges are
distinct.

We call f~'(i) a color class of . By definition, a k-edge-coloring
of a graph G is a partition of E(G) into k matchings.



The edge chromatic number, x/(G), of a graph G is the
minimum positive integer k s.t. G has a k-edge-coloring.
Sometimes it is called the chromatic index of G.

G is k-edge-colorable if x'(G) < k.

Observation: x/(G) > A(G) for every G.



The edge chromatic number, x/(G), of a graph G is the
minimum positive integer k s.t. G has a k-edge-coloring.
Sometimes it is called the chromatic index of G.

G is k-edge-colorable if x'(G) < k.

Observation: x/(G) > A(G) for every G.

Fact: For each k > 3, the problem to check whether a graph G
with A(G) = k is k-colorable is NP-complete.



The edge chromatic number, x/(G), of a graph G is the
minimum positive integer k s.t. G has a k-edge-coloring.
Sometimes it is called the chromatic index of G.

G is k-edge-colorable if x'(G) < k.

Observation: x/(G) > A(G) for every G.

Fact: For each k > 3, the problem to check whether a graph G
with A(G) = k is k-colorable is NP-complete.

Examples: 1. Complete graphs. 2. Cycles. 3. Bipartite graphs.
4. Petersen graph.
5. 3-regular graphs with a cut edge.
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It follows that \/(G) < 2A(G) — 2 for every graph G. In
particular, if A(G) = 3, then /(G) < 4.

Shannon’s application and example.

Graph S,

A(Sk) = k and /(Sy) = L%J



