
Graph coloring. Part 5

Lecture 36



Brooks’ Theorem
Recall that χ(Kn) = n = ∆(Kn) + 1 and
χ(C2t+1) = 3 = ∆(C2t+1) + 1.

Theorem 5.8 (Brooks): Let k ≥ 3 and ∆(G) ≤ k . If G does not
contain Kk+1, then χ(G) ≤ k .

Proof. Fix k ≥ 3. Suppose the theorem does not hold for this k .
Choose a counter-example G with the smallest
|V (G)|+ |E(G)|. By the minimality, G is (k + 1)-critical. So, by
Theorem 5.6, G is 2-connected and k -regular. Let n = |V (G)|.

Since G is not a complete graph, it has vertices v1, v2, v3 such
that v1v2, v2v3 ∈ E(G) and v1v3 /∈ E(G).
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Consider the following construction of a path P.
Steps 1,2,3: Let x1 = v1, x2 = v2 and x3 = v3.

Step i for i ≥ 4: If xi−1 has a neighbor v /∈ {x1, . . . , xi−1}, then
let xi = v . If not, let h = i − 1, P = x1, . . . , xh and stop.

Case 1: h ≤ n − 1. Let j be the smallest index s.t. xjxh ∈ E(G).
Then G has cycle C = xj , xj+1, . . . , xh, xj , and N(xh) ⊆ V (C).

Since G is connected, we can cyclically rename the vertices of
C as yj , yj+1, . . . , yh, yj so that N(yh) ⊆ V (C) and yj has a
neighbor y ′

j outside of C.

Since G is (k + 1)-critical, graph G′ = G − V (C) has a coloring
f with colors 1, . . . , k . We may assume that f (y ′

j ) = 1.
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We now extend f greedily to V (C) using the order
yh, yh−1, . . . , yj of the vertices of C. In particular, f (yh) = 1.

We claim that no more than k colors will be used: If i > j , then
the neighbor yi−1 of yi is not colored, and hence yi has at most
k − 1 forbidden colors. If i = j , then yi has two neighbors, yh
and y ′

j , of the same color. This contradicts the choice of G.

Case 2: h = n, i.e. P = x1, . . . , xn. Since k ≥ 3, x2 has a
neighbor xj for some j ≥ 4. Consider a greedy coloring of G
w.r.t. order

x1, x3, x4, . . . , xj−1, xn, xn−1, . . . , xj , x2.

In this process, every xi ̸= x2 at the moment of coloring has an
uncolored neighbor, and hence gets a color m ≤ k .

On the other hand, x2 has two neighbors, x1 and x3, of the
same color. This proves the theorem.
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A natural question: Can we improve the bound on χ(G) if G is
triangle-free?

Theorem 5.9. If ∆(G) ≤ 7 and ω(G) ≤ 3, then χ(G) ≤ 6.

Proof: Consider a partition V (G) = V1 ∪ V2 of V (G)

with the maximum |EG(V1,V2)|. (1)

For i = 1,2, let Gi = G[Vi ]. We claim that

for i = 1,2, ∆(Gi) ≤ 3. (2)

Indeed, if say v ∈ V1 has dG1 ≥ 4, then the partition
(V1 − v ,V2 + v) has more edges between the sets, a
contradiction to (1). This proves (2).

Then by Brooks’ Theorem, χ(G1) ≤ 3 and χ(G2) ≤ 3. Hence,
χ(G) ≤ 3 + 3 = 6.
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A (proper) k -edge-coloring of a graph G is a mapping
f : E(G) → {1, . . . , k} such that

f−1(i) is a matching for all i ∈ {1, . . . , k}. (3)

Observations: 1. If G has a loop, then it has no k -edge-coloring
for any k .
2. Multiple edges DO affect coloring.
3. For each v ∈ V (G), the colors of all incident edges are
distinct.

We call f−1(i) a color class of f . By definition, a k -edge-coloring
of a graph G is a partition of E(G) into k matchings.
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The edge chromatic number, χ′(G), of a graph G is the
minimum positive integer k s.t. G has a k -edge-coloring.
Sometimes it is called the chromatic index of G.
G is k -edge-colorable if χ′(G) ≤ k .

Observation: χ′(G) ≥ ∆(G) for every G.

Fact: For each k ≥ 3, the problem to check whether a graph G
with ∆(G) = k is k -colorable is NP-complete.

Examples: 1. Complete graphs. 2. Cycles. 3. Bipartite graphs.
4. Petersen graph.
5. 3-regular graphs with a cut edge.
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Line graphs
For a loopless G, the line graph L(G) has V (L(G)) = E(G) and
two vertices e and e′ of L(G) are adjacent iff e and e′ share a
vertex in G.

By construction, χ′(G) = χ(L(G)) for every graph G.
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It follows that χ′(G) ≤ 2∆(G)− 2 for every graph G. In
particular, if ∆(G) = 3, then χ′(G) ≤ 4.

Shannon’s application and example.

∆(Sk ) = k and χ′(Sk ) =
⌊

3k
2

⌋
.
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