Graph coloring. Part 5

Lecture 36

Recall that $\chi(K_n) = n = \Delta(K_n) + 1$ and $\chi(C_{2t+1}) = 3 = \Delta(C_{2t+1}) + 1$.

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Recall that $\chi(K_n) = n = \Delta(K_n) + 1$ and $\chi(C_{2t+1}) = 3 = \Delta(C_{2t+1}) + 1$.

Theorem 5.8 (Brooks): Let $k \ge 3$ and $\Delta(G) \le k$. If *G* does not contain K_{k+1} , then $\chi(G) \le k$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Recall that $\chi(K_n) = n = \Delta(K_n) + 1$ and $\chi(C_{2t+1}) = 3 = \Delta(C_{2t+1}) + 1$.

Theorem 5.8 (Brooks): Let $k \ge 3$ and $\Delta(G) \le k$. If *G* does not contain K_{k+1} , then $\chi(G) \le k$.

Proof. Fix $k \ge 3$. Suppose the theorem does not hold for this k. Choose a counter-example G with the smallest |V(G)| + |E(G)|. By the minimality, G is (k + 1)-critical. So, by Theorem 5.6, G is 2-connected and k-regular. Let n = |V(G)|.

(日) (日) (日) (日) (日) (日) (日)

Recall that $\chi(K_n) = n = \Delta(K_n) + 1$ and $\chi(C_{2t+1}) = 3 = \Delta(C_{2t+1}) + 1$.

Theorem 5.8 (Brooks): Let $k \ge 3$ and $\Delta(G) \le k$. If *G* does not contain K_{k+1} , then $\chi(G) \le k$.

Proof. Fix $k \ge 3$. Suppose the theorem does not hold for this k. Choose a counter-example G with the smallest |V(G)| + |E(G)|. By the minimality, G is (k + 1)-critical. So, by Theorem 5.6, G is 2-connected and k-regular. Let n = |V(G)|.

Since *G* is not a complete graph, it has vertices v_1 , v_2 , v_3 such that v_1v_2 , $v_2v_3 \in E(G)$ and $v_1v_3 \notin E(G)$.

(日) (日) (日) (日) (日) (日) (日)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Step *i* for $i \ge 4$: If x_{i-1} has a neighbor $v \notin \{x_1, \ldots, x_{i-1}\}$, then let $x_i = v$. If not, let h = i - 1, $P = x_1, \ldots, x_h$ and stop.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Step *i* for $i \ge 4$: If x_{i-1} has a neighbor $v \notin \{x_1, \ldots, x_{i-1}\}$, then let $x_i = v$. If not, let h = i - 1, $P = x_1, \ldots, x_h$ and stop.

Case 1: $h \le n - 1$. Let *j* be the smallest index s.t. $x_j x_h \in E(G)$. Then *G* has cycle $C = x_j, x_{j+1}, \dots, x_h, x_j$, and $N(x_h) \subseteq V(C)$.

Step *i* for $i \ge 4$: If x_{i-1} has a neighbor $v \notin \{x_1, \ldots, x_{i-1}\}$, then let $x_i = v$. If not, let h = i - 1, $P = x_1, \ldots, x_h$ and stop.

Case 1: $h \le n - 1$. Let *j* be the smallest index s.t. $x_j x_h \in E(G)$. Then *G* has cycle $C = x_j, x_{j+1}, \dots, x_h, x_j$, and $N(x_h) \subseteq V(C)$.

Since *G* is connected, we can cyclically rename the vertices of *C* as $y_j, y_{j+1}, \ldots, y_h, y_j$ so that $N(y_h) \subseteq V(C)$ and y_j has a neighbor y'_i outside of *C*.

Since *G* is (k + 1)-critical, graph G' = G - V(C) has a coloring *f* with colors $1, \ldots, k$. We may assume that $f(y'_i) = 1$.

We now extend *f* greedily to V(C) using the order $y_h, y_{h-1}, \ldots, y_j$ of the vertices of *C*. In particular, $f(y_h) = 1$.

We claim that no more than *k* colors will be used: If i > j, then the neighbor y_{i-1} of y_i is not colored, and hence y_i has at most k - 1 forbidden colors. If i = j, then y_i has two neighbors, y_h and y'_i , of the same color. This contradicts the choice of *G*.

We now extend *f* greedily to V(C) using the order $y_h, y_{h-1}, \ldots, y_j$ of the vertices of *C*. In particular, $f(y_h) = 1$.

We claim that no more than *k* colors will be used: If i > j, then the neighbor y_{i-1} of y_i is not colored, and hence y_i has at most k - 1 forbidden colors. If i = j, then y_i has two neighbors, y_h and y'_i , of the same color. This contradicts the choice of *G*.

Case 2: h = n, i.e. $P = x_1, ..., x_n$. Since $k \ge 3$, x_2 has a neighbor x_j for some $j \ge 4$. Consider a greedy coloring of G w.r.t. order

 $x_1, x_3, x_4, \ldots, x_{j-1}, x_n, x_{n-1}, \ldots, x_j, x_2.$

In this process, every $x_i \neq x_2$ at the moment of coloring has an uncolored neighbor, and hence gets a color $m \leq k$.

We now extend *f* greedily to V(C) using the order $y_h, y_{h-1}, \ldots, y_j$ of the vertices of *C*. In particular, $f(y_h) = 1$.

We claim that no more than *k* colors will be used: If i > j, then the neighbor y_{i-1} of y_i is not colored, and hence y_i has at most k - 1 forbidden colors. If i = j, then y_i has two neighbors, y_h and y'_i , of the same color. This contradicts the choice of *G*.

Case 2: h = n, i.e. $P = x_1, ..., x_n$. Since $k \ge 3$, x_2 has a neighbor x_j for some $j \ge 4$. Consider a greedy coloring of G w.r.t. order

 $x_1, x_3, x_4, \ldots, x_{j-1}, x_n, x_{n-1}, \ldots, x_j, x_2.$

In this process, every $x_i \neq x_2$ at the moment of coloring has an uncolored neighbor, and hence gets a color $m \leq k$.

On the other hand, x_2 has two neighbors, x_1 and x_3 , of the same color. This proves the theorem.

Theorem 5.9. If $\Delta(G) \leq 7$ and $\omega(G) \leq 3$, then $\chi(G) \leq 6$.

Proof: Consider a partition $V(G) = V_1 \cup V_2$ of V(G)

with the maximum $|E_G(V_1, V_2)|$. (1)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 5.9. If $\Delta(G) \le 7$ and $\omega(G) \le 3$, then $\chi(G) \le 6$. Proof: Consider a partition $V(G) = V_1 \cup V_2$ of V(G)

with the maximum $|E_G(V_1, V_2)|$. (1)

For i = 1, 2, let $G_i = G[V_i]$. We claim that

for
$$i = 1, 2, \quad \Delta(G_i) \le 3.$$
 (2)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem 5.9. If $\Delta(G) \le 7$ and $\omega(G) \le 3$, then $\chi(G) \le 6$. Proof: Consider a partition $V(G) = V_1 \cup V_2$ of V(G)

with the maximum $|E_G(V_1, V_2)|$. (1)

For i = 1, 2, let $G_i = G[V_i]$. We claim that

for
$$i = 1, 2, \quad \Delta(G_i) \le 3.$$
 (2)

Indeed, if say $v \in V_1$ has $d_{G_1} \ge 4$, then the partition $(V_1 - v, V_2 + v)$ has more edges between the sets, a contradiction to (1). This proves (2).

Theorem 5.9. If $\Delta(G) \le 7$ and $\omega(G) \le 3$, then $\chi(G) \le 6$. Proof: Consider a partition $V(G) = V_1 \cup V_2$ of V(G)

with the maximum $|E_G(V_1, V_2)|$. (1)

For i = 1, 2, let $G_i = G[V_i]$. We claim that

for
$$i = 1, 2, \quad \Delta(G_i) \le 3.$$
 (2)

Indeed, if say $v \in V_1$ has $d_{G_1} \ge 4$, then the partition $(V_1 - v, V_2 + v)$ has more edges between the sets, a contradiction to (1). This proves (2).

Then by Brooks' Theorem, $\chi(G_1) \leq 3$ and $\chi(G_2) \leq 3$. Hence, $\chi(G) \leq 3 + 3 = 6$.

A (proper) *k*-edge-coloring of a graph *G* is a mapping $f : E(G) \rightarrow \{1, \ldots, k\}$ such that

 $f^{-1}(i)$ is a matching for all $i \in \{1, \dots, k\}$. (3)

A (proper) *k*-edge-coloring of a graph *G* is a mapping $f : E(G) \rightarrow \{1, \ldots, k\}$ such that

 $f^{-1}(i)$ is a matching for all $i \in \{1, \dots, k\}$. (3)

(日) (日) (日) (日) (日) (日) (日)

Observations: 1. If G has a loop, then it has no k-edge-coloring for any k.

2. Multiple edges DO affect coloring.

3. For each $v \in V(G)$, the colors of all incident edges are distinct.

A (proper) *k*-edge-coloring of a graph *G* is a mapping $f: E(G) \rightarrow \{1, \ldots, k\}$ such that

 $f^{-1}(i)$ is a matching for all $i \in \{1, \dots, k\}$. (3)

(日) (日) (日) (日) (日) (日) (日)

Observations: 1. If G has a loop, then it has no k-edge-coloring for any k.

- 2. Multiple edges DO affect coloring.
- 3. For each $v \in V(G)$, the colors of all incident edges are distinct.

We call $f^{-1}(i)$ a color class of f. By definition, a *k*-edge-coloring of a graph G is a partition of E(G) into *k* matchings.

The edge chromatic number, $\chi'(G)$, of a graph *G* is the minimum positive integer *k* s.t. *G* has a *k*-edge-coloring. Sometimes it is called the chromatic index of *G*. *G* is *k*-edge-colorable if $\chi'(G) \leq k$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Observation: $\chi'(G) \ge \Delta(G)$ for every *G*.

The edge chromatic number, $\chi'(G)$, of a graph *G* is the minimum positive integer *k* s.t. *G* has a *k*-edge-coloring. Sometimes it is called the chromatic index of *G*. *G* is *k*-edge-colorable if $\chi'(G) \leq k$.

Observation: $\chi'(G) \ge \Delta(G)$ for every *G*.

Fact: For each $k \ge 3$, the problem to check whether a graph *G* with $\Delta(G) = k$ is *k*-colorable is NP-complete.

(ロ) (同) (三) (三) (三) (三) (○) (○)

The edge chromatic number, $\chi'(G)$, of a graph *G* is the minimum positive integer *k* s.t. *G* has a *k*-edge-coloring. Sometimes it is called the chromatic index of *G*. *G* is *k*-edge-colorable if $\chi'(G) \leq k$.

Observation: $\chi'(G) \ge \Delta(G)$ for every *G*.

Fact: For each $k \ge 3$, the problem to check whether a graph *G* with $\Delta(G) = k$ is *k*-colorable is NP-complete.

Examples: 1. Complete graphs. 2. Cycles. 3. Bipartite graphs. 4. Petersen graph.

5. 3-regular graphs with a cut edge.

Line graphs

For a loopless *G*, the line graph L(G) has V(L(G)) = E(G) and two vertices *e* and *e'* of L(G) are adjacent iff *e* and *e'* share a vertex in *G*.

Line graphs

For a loopless *G*, the line graph L(G) has V(L(G)) = E(G) and two vertices *e* and *e'* of L(G) are adjacent iff *e* and *e'* share a vertex in *G*.

By construction, $\chi'(G) = \chi(L(G))$ for every graph *G*.

・ロト・西ト・ヨト ・ヨー シック

Line graphs

For a loopless *G*, the line graph L(G) has V(L(G)) = E(G) and two vertices *e* and *e'* of L(G) are adjacent iff *e* and *e'* share a vertex in *G*.

By construction, $\chi'(G) = \chi(L(G))$ for every graph *G*.

・ロト・西ト・ヨト ・ヨー シック

It follows that $\chi'(G) \leq 2\Delta(G) - 2$ for every graph *G*. In particular, if $\Delta(G) = 3$, then $\chi'(G) \leq 4$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

It follows that $\chi'(G) \leq 2\Delta(G) - 2$ for every graph *G*. In particular, if $\Delta(G) = 3$, then $\chi'(G) \leq 4$.

Shannon's application and example.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●