Graph coloring. Part 5

Lecture 36

Brooks' Theorem

Recall that $\chi\left(K_{n}\right)=n=\Delta\left(K_{n}\right)+1$ and
$\chi\left(C_{2 t+1}\right)=3=\Delta\left(C_{2 t+1}\right)+1$.

Brooks' Theorem

Recall that $\chi\left(K_{n}\right)=n=\Delta\left(K_{n}\right)+1$ and
$\chi\left(C_{2 t+1}\right)=3=\Delta\left(C_{2 t+1}\right)+1$.
Theorem 5.8 (Brooks): Let $k \geq 3$ and $\Delta(G) \leq k$. If G does not contain K_{k+1}, then $\chi(G) \leq k$.

Brooks' Theorem

Recall that $\chi\left(K_{n}\right)=n=\Delta\left(K_{n}\right)+1$ and
$\chi\left(C_{2 t+1}\right)=3=\Delta\left(C_{2 t+1}\right)+1$.
Theorem 5.8 (Brooks): Let $k \geq 3$ and $\Delta(G) \leq k$. If G does not contain K_{k+1}, then $\chi(G) \leq k$.

Proof. Fix $k \geq 3$. Suppose the theorem does not hold for this k. Choose a counter-example G with the smallest $|V(G)|+|E(G)|$. By the minimality, G is $(k+1)$-critical. So, by Theorem 5.6, G is 2-connected and k-regular. Let $n=|V(G)|$.

Brooks' Theorem

Recall that $\chi\left(K_{n}\right)=n=\Delta\left(K_{n}\right)+1$ and
$\chi\left(C_{2 t+1}\right)=3=\Delta\left(C_{2 t+1}\right)+1$.
Theorem 5.8 (Brooks): Let $k \geq 3$ and $\Delta(G) \leq k$. If G does not contain K_{k+1}, then $\chi(G) \leq k$.

Proof. Fix $k \geq 3$. Suppose the theorem does not hold for this k. Choose a counter-example G with the smallest $|V(G)|+|E(G)|$. By the minimality, G is $(k+1)$-critical. So, by Theorem 5.6, G is 2-connected and k-regular. Let $n=|V(G)|$.

Since G is not a complete graph, it has vertices v_{1}, v_{2}, v_{3} such that $v_{1} v_{2}, v_{2} v_{3} \in E(G)$ and $v_{1} v_{3} \notin E(G)$.

Consider the following construction of a path P. Steps 1,2,3: Let $x_{1}=v_{1}, x_{2}=v_{2}$ and $x_{3}=v_{3}$.

Consider the following construction of a path P. Steps 1,2,3: Let $x_{1}=v_{1}, x_{2}=v_{2}$ and $x_{3}=v_{3}$.

Step i for $i \geq 4$: If x_{i-1} has a neighbor $v \notin\left\{x_{1}, \ldots, x_{i-1}\right\}$, then let $x_{i}=v$. If not, let $h=i-1, P=x_{1}, \ldots, x_{h}$ and stop.

Consider the following construction of a path P. Steps 1,2,3: Let $x_{1}=v_{1}, x_{2}=v_{2}$ and $x_{3}=v_{3}$.

Step i for $i \geq 4$: If x_{i-1} has a neighbor $v \notin\left\{x_{1}, \ldots, x_{i-1}\right\}$, then let $x_{i}=v$. If not, let $h=i-1, P=x_{1}, \ldots, x_{h}$ and stop.

Case 1: $h \leq n-1$. Let j be the smallest index s.t. $x_{j} x_{h} \in E(G)$. Then G has cycle $C=x_{j}, x_{j+1}, \ldots, x_{h}, x_{j}$, and $N\left(x_{h}\right) \subseteq V(C)$.

Consider the following construction of a path P.
Steps 1,2,3: Let $x_{1}=v_{1}, x_{2}=v_{2}$ and $x_{3}=v_{3}$.
Step i for $i \geq 4$: If x_{i-1} has a neighbor $v \notin\left\{x_{1}, \ldots, x_{i-1}\right\}$, then let $x_{i}=v$. If not, let $h=i-1, P=x_{1}, \ldots, x_{h}$ and stop.

Case 1: $h \leq n-1$. Let j be the smallest index s.t. $x_{j} x_{h} \in E(G)$. Then G has cycle $C=x_{j}, x_{j+1}, \ldots, x_{h}, x_{j}$, and $N\left(x_{h}\right) \subseteq V(C)$.

Since G is connected, we can cyclically rename the vertices of C as $y_{j}, y_{j+1}, \ldots, y_{h}, y_{j}$ so that $N\left(y_{h}\right) \subseteq V(C)$ and y_{j} has a neighbor y_{j}^{\prime} outside of C.

Since G is $(k+1)$-critical, graph $G^{\prime}=G-V(C)$ has a coloring f with colors $1, \ldots, k$. We may assume that $f\left(y_{j}^{\prime}\right)=1$.

We now extend f greedily to $V(C)$ using the order $y_{h}, y_{h-1}, \ldots, y_{j}$ of the vertices of C. In particular, $f\left(y_{h}\right)=1$.

We claim that no more than k colors will be used: If $i>j$, then the neighbor y_{i-1} of y_{i} is not colored, and hence y_{i} has at most $k-1$ forbidden colors. If $i=j$, then y_{i} has two neighbors, y_{h} and y_{j}^{\prime}, of the same color. This contradicts the choice of G.

We now extend f greedily to $V(C)$ using the order $y_{h}, y_{h-1}, \ldots, y_{j}$ of the vertices of C. In particular, $f\left(y_{h}\right)=1$.

We claim that no more than k colors will be used: If $i>j$, then the neighbor y_{i-1} of y_{i} is not colored, and hence y_{i} has at most $k-1$ forbidden colors. If $i=j$, then y_{i} has two neighbors, y_{n} and y_{j}^{\prime}, of the same color. This contradicts the choice of G.
Case 2: $h=n$, i.e. $P=x_{1}, \ldots, x_{n}$. Since $k \geq 3, x_{2}$ has a neighbor x_{j} for some $j \geq 4$. Consider a greedy coloring of G w.r.t. order

$$
x_{1}, x_{3}, x_{4}, \ldots, x_{j-1}, x_{n}, x_{n-1}, \ldots, x_{j}, x_{2} .
$$

In this process, every $x_{i} \neq x_{2}$ at the moment of coloring has an uncolored neighbor, and hence gets a color $m \leq k$.

We now extend f greedily to $V(C)$ using the order $y_{h}, y_{h-1}, \ldots, y_{j}$ of the vertices of C. In particular, $f\left(y_{h}\right)=1$.

We claim that no more than k colors will be used: If $i>j$, then the neighbor y_{i-1} of y_{i} is not colored, and hence y_{i} has at most $k-1$ forbidden colors. If $i=j$, then y_{i} has two neighbors, y_{h} and y_{j}^{\prime}, of the same color. This contradicts the choice of G.

Case 2: $h=n$, i.e. $P=x_{1}, \ldots, x_{n}$. Since $k \geq 3, x_{2}$ has a neighbor x_{j} for some $j \geq 4$. Consider a greedy coloring of G w.r.t. order

$$
x_{1}, x_{3}, x_{4}, \ldots, x_{j-1}, x_{n}, x_{n-1}, \ldots, x_{j}, x_{2} .
$$

In this process, every $x_{i} \neq x_{2}$ at the moment of coloring has an uncolored neighbor, and hence gets a color $m \leq k$.

On the other hand, x_{2} has two neighbors, x_{1} and x_{3}, of the same color. This proves the theorem.

A natural question: Can we improve the bound on $\chi(G)$ if G is triangle-free?

A natural question: Can we improve the bound on $\chi(G)$ if G is triangle-free?

Theorem 5.9. If $\Delta(G) \leq 7$ and $\omega(G) \leq 3$, then $\chi(G) \leq 6$.
Proof: Consider a partition $V(G)=V_{1} \cup V_{2}$ of $V(G)$

$$
\begin{equation*}
\text { with the maximum }\left|E_{G}\left(V_{1}, V_{2}\right)\right| \text {. } \tag{1}
\end{equation*}
$$

A natural question: Can we improve the bound on $\chi(G)$ if G is triangle-free?

Theorem 5.9. If $\Delta(G) \leq 7$ and $\omega(G) \leq 3$, then $\chi(G) \leq 6$.
Proof: Consider a partition $V(G)=V_{1} \cup V_{2}$ of $V(G)$

$$
\begin{equation*}
\text { with the maximum }\left|E_{G}\left(V_{1}, V_{2}\right)\right| \text {. } \tag{1}
\end{equation*}
$$

For $i=1,2$, let $G_{i}=G\left[V_{i}\right]$. We claim that

$$
\begin{equation*}
\text { for } i=1,2, \quad \Delta\left(G_{i}\right) \leq 3 . \tag{2}
\end{equation*}
$$

A natural question: Can we improve the bound on $\chi(G)$ if G is triangle-free?

Theorem 5.9. If $\Delta(G) \leq 7$ and $\omega(G) \leq 3$, then $\chi(G) \leq 6$.
Proof: Consider a partition $V(G)=V_{1} \cup V_{2}$ of $V(G)$

$$
\begin{equation*}
\text { with the maximum }\left|E_{G}\left(V_{1}, V_{2}\right)\right| \text {. } \tag{1}
\end{equation*}
$$

For $i=1,2$, let $G_{i}=G\left[V_{i}\right]$. We claim that

$$
\begin{equation*}
\text { for } i=1,2, \quad \Delta\left(G_{i}\right) \leq 3 \tag{2}
\end{equation*}
$$

Indeed, if say $v \in V_{1}$ has $d_{G_{1}} \geq 4$, then the partition ($V_{1}-v, V_{2}+v$) has more edges between the sets, a contradiction to (1). This proves (2).

A natural question: Can we improve the bound on $\chi(G)$ if G is triangle-free?

Theorem 5.9. If $\Delta(G) \leq 7$ and $\omega(G) \leq 3$, then $\chi(G) \leq 6$.
Proof: Consider a partition $V(G)=V_{1} \cup V_{2}$ of $V(G)$

$$
\begin{equation*}
\text { with the maximum }\left|E_{G}\left(V_{1}, V_{2}\right)\right| \text {. } \tag{1}
\end{equation*}
$$

For $i=1,2$, let $G_{i}=G\left[V_{i}\right]$. We claim that

$$
\begin{equation*}
\text { for } i=1,2, \quad \Delta\left(G_{i}\right) \leq 3 . \tag{2}
\end{equation*}
$$

Indeed, if say $v \in V_{1}$ has $d_{G_{1}} \geq 4$, then the partition ($V_{1}-v, V_{2}+v$) has more edges between the sets, a contradiction to (1). This proves (2).

Then by Brooks' Theorem, $\chi\left(G_{1}\right) \leq 3$ and $\chi\left(G_{2}\right) \leq 3$. Hence, $\chi(G) \leq 3+3=6$.

A (proper) k-edge-coloring of a graph G is a mapping $f: E(G) \rightarrow\{1, \ldots, k\}$ such that $f^{-1}(i)$ is a matching for all $i \in\{1, \ldots, k\}$.

A (proper) k-edge-coloring of a graph G is a mapping $f: E(G) \rightarrow\{1, \ldots, k\}$ such that

Observations: 1. If G has a loop, then it has no k-edge-coloring for any k.
2. Multiple edges DO affect coloring.
3. For each $v \in V(G)$, the colors of all incident edges are distinct.

A (proper) k-edge-coloring of a graph G is a mapping $f: E(G) \rightarrow\{1, \ldots, k\}$ such that $f^{-1}(i)$ is a matching for all $i \in\{1, \ldots, k\}$.

Observations: 1. If G has a loop, then it has no k-edge-coloring for any k.
2. Multiple edges DO affect coloring.
3. For each $v \in V(G)$, the colors of all incident edges are distinct.

We call $f^{-1}(i)$ a color class of f. By definition, a k-edge-coloring of a graph G is a partition of $E(G)$ into k matchings.

The edge chromatic number, $\chi^{\prime}(G)$, of a graph G is the minimum positive integer k s.t. G has a k-edge-coloring. Sometimes it is called the chromatic index of G. G is k-edge-colorable if $\chi^{\prime}(G) \leq k$.
Observation: $\chi^{\prime}(G) \geq \Delta(G)$ for every G.

The edge chromatic number, $\chi^{\prime}(G)$, of a graph G is the minimum positive integer k s.t. G has a k-edge-coloring. Sometimes it is called the chromatic index of G. G is k-edge-colorable if $\chi^{\prime}(G) \leq k$.
Observation: $\chi^{\prime}(G) \geq \Delta(G)$ for every G.
Fact: For each $k \geq 3$, the problem to check whether a graph G with $\Delta(G)=k$ is k-colorable is NP-complete.

The edge chromatic number, $\chi^{\prime}(G)$, of a graph G is the minimum positive integer k s.t. G has a k-edge-coloring. Sometimes it is called the chromatic index of G. G is k-edge-colorable if $\chi^{\prime}(G) \leq k$.
Observation: $\chi^{\prime}(G) \geq \Delta(G)$ for every G.
Fact: For each $k \geq 3$, the problem to check whether a graph G with $\Delta(G)=k$ is k-colorable is NP-complete.

Examples: 1. Complete graphs. 2. Cycles. 3. Bipartite graphs.
4. Petersen graph.
5. 3-regular graphs with a cut edge.

Line graphs

For a loopless G, the line graph $L(G)$ has $V(L(G))=E(G)$ and two vertices e and e^{\prime} of $L(G)$ are adjacent iff e and e^{\prime} share a vertex in G.

Line graphs

For a loopless G, the line graph $L(G)$ has $V(L(G))=E(G)$ and two vertices e and e^{\prime} of $L(G)$ are adjacent iff e and e^{\prime} share a vertex in G.

By construction, $\chi^{\prime}(G)=\chi(L(G))$ for every graph G.

Line graphs

For a loopless G, the line graph $L(G)$ has $V(L(G))=E(G)$ and two vertices e and e^{\prime} of $L(G)$ are adjacent iff e and e^{\prime} share a vertex in G.

By construction, $\chi^{\prime}(G)=\chi(L(G))$ for every graph G.

It follows that $\chi^{\prime}(G) \leq 2 \Delta(G)-2$ for every graph G. In particular, if $\Delta(G)=3$, then $\chi^{\prime}(G) \leq 4$.

It follows that $\chi^{\prime}(G) \leq 2 \Delta(G)-2$ for every graph G. In particular, if $\Delta(G)=3$, then $\chi^{\prime}(G) \leq 4$.

Shannon's application and example.

Graph \mathbf{S}_{6}

$$
\Delta\left(S_{k}\right)=k \text { and } \chi^{\prime}\left(S_{k}\right)=\left\lfloor\frac{3 k}{2}\right\rfloor .
$$

