Eulerian circuits

Lecture 4

Lemma 1.2 (Lemma 1.2.15 in the book) : Every closed walk of odd length contains an odd cycle.

Proof. We use induction on the length ℓ of the closed walk W. If $\ell=1$, then W is a loop, i.e., a cycle of length 1.
Now, assume $\ell>1$. Consider W starting and ending at a vertex u. If W does not contain any repeated vertices (except starting and ending at u), then W is a cycle. So we assume that W contains a repeated vertex v.

Lemma 1.2 (Lemma 1.2.15 in the book): Every closed walk of odd length contains an odd cycle.

Proof. We use induction on the length ℓ of the closed walk W. If $\ell=1$, then W is a loop, i.e., a cycle of length 1 .
Now, assume $\ell>1$. Consider W starting and ending at a vertex u. If W does not contain any repeated vertices (except starting and ending at u), then W is a cycle. So we assume that W contains a repeated vertex v.

Consider W as a walk starting at v, and note that we can split W into two shorter closed walks, W^{\prime} and $W^{\prime \prime}$, both starting at v. Since W had an odd number of edges, either W^{\prime} or $W^{\prime \prime}$ also has an odd number of edges. So by induction, it contains an odd cycle, which is also contained in W.

Lemma 1.5: (1) If $\delta(G) \geq 2$, then G has a cycle;
(2) If every degree of G is even, then we can partition $E(G)$ into cycles.

Lemma 1.5: (1) If $\delta(G) \geq 2$, then G has a cycle;
(2) If every degree of G is even, then we can partition $E(G)$ into cycles.

Proof. We have proved (1) in the last lecture..

Lemma 1.5: (1) If $\delta(G) \geq 2$, then G has a cycle;
(2) If every degree of G is even, then we can partition $E(G)$ into cycles.

Proof. We have proved (1) in the last lecture..
We prove (2) by induction on $|E(G)|$ using (1). If $|E(G)|=0$, there is nothing to prove.
Suppose (2) holds for every G with less than m edges, and G is a graph with m edges in which degree of each vertex is even.

Lemma 1.5: (1) If $\delta(G) \geq 2$, then G has a cycle;
(2) If every degree of G is even, then we can partition $E(G)$ into cycles.

Proof. We have proved (1) in the last lecture..
We prove (2) by induction on $|E(G)|$ using (1). If $|E(G)|=0$, there is nothing to prove.
Suppose (2) holds for every G with less than m edges, and G is a graph with m edges in which degree of each vertex is even.

Let G_{1} be a nontrivial component of G. By (1), G_{1} has a cycle, say C_{0}. Let G_{2} be obtained from G by deleting all edges of C_{0}.

Then degrees of all vertices in G_{2} are even. By induction, $E\left(G_{2}\right)$ can be partitioned into edge sets of cycles, say C_{1}, \ldots, C_{t}.

Lemma 1.5: (1) If $\delta(G) \geq 2$, then G has a cycle;
(2) If every degree of G is even, then we can partition $E(G)$ into cycles.

Proof. We have proved (1) in the last lecture..
We prove (2) by induction on $|E(G)|$ using (1). If $|E(G)|=0$, there is nothing to prove.
Suppose (2) holds for every G with less than m edges, and G is a graph with m edges in which degree of each vertex is even.

Let G_{1} be a nontrivial component of G. By (1), G_{1} has a cycle, say C_{0}. Let G_{2} be obtained from G by deleting all edges of C_{0}.

Then degrees of all vertices in G_{2} are even. By induction, $E\left(G_{2}\right)$ can be partitioned into edge sets of cycles, say C_{1}, \ldots, C_{t}.
Hence $E(G)$ can be partitioned into edge sets of cycles C_{1}, \ldots, C_{t} and C_{0}.

Eulerian circuits

A circuit is a closed trail in which the first edge is not specified but the cyclic order is kept. An Eulerian circuit (resp., an Eulerian trail) in a graph G is a circuit (resp., trail) containing all edges of G.

Eulerian circuits

A circuit is a closed trail in which the first edge is not specified but the cyclic order is kept. An Eulerian circuit (resp., an Eulerian trail) in a graph G is a circuit (resp., trail) containing all edges of G.

In Königsberg Bridge Problem, the citizens were asking about Eulerian circuit or trail.

Eulerian circuits

A circuit is a closed trail in which the first edge is not specified but the cyclic order is kept. An Eulerian circuit (resp., an Eulerian trail) in a graph G is a circuit (resp., trail) containing all edges of G.

In Königsberg Bridge Problem, the citizens were asking about Eulerian circuit or trail.

Recall that for the existence of an Eulerian circuit in G it is necessary that degree of every vertex in G is even.

Another necessary condition is that G has at most one nontrivial component (isolated vertices do not count).

Theorem 1.6 (Theorem 1.2.26) Euler's Theorem: A graph G has an Eulerian circuit if and only if
(a) degree of every vertex in G is even, and
(b) G has at most one nontrivial component.

Theorem 1.6 (Theorem 1.2.26) Euler's Theorem: A graph G has an Eulerian circuit if and only if
(a) degree of every vertex in G is even, and
(b) G has at most one nontrivial component.

Proof. Necessity was already proved. Consider now a graph G satisfying both, (a) and (b).

Theorem 1.6 (Theorem 1.2.26) Euler's Theorem: A graph G has an Eulerian circuit if and only if
(a) degree of every vertex in G is even, and
(b) G has at most one nontrivial component.

Proof. Necessity was already proved. Consider now a graph G satisfying both, (a) and (b).
Let C be a longest circuit in G. If C contains every edge, this is an Eulerian circuit and we are done.

If not, consider the subgraph $G^{\prime} \subseteq G$ with $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=E(G) \backslash E(C)$ (i.e. we delete all the edges in C from G). Since every vertex has even degree in C (by virtue of C being a circuit) and even degree in G, every vertex also has even degree in G^{\prime}. Since G is connected, there must be a vertex v that has positive degree in both G^{\prime} and C.

Theorem 1.6 (Theorem 1.2.26) Euler's Theorem: A graph G has an Eulerian circuit if and only if
(a) degree of every vertex in G is even, and
(b) G has at most one nontrivial component.

Proof. Necessity was already proved. Consider now a graph G satisfying both, (a) and (b).
Let C be a longest circuit in G. If C contains every edge, this is an Eulerian circuit and we are done.

If not, consider the subgraph $G^{\prime} \subseteq G$ with $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=E(G) \backslash E(C)$ (i.e. we delete all the edges in C from G). Since every vertex has even degree in C (by virtue of C being a circuit) and even degree in G, every vertex also has even degree in G^{\prime}. Since G is connected, there must be a vertex v that has positive degree in both G^{\prime} and C.

By Lemma 1.5(2), G^{\prime} has a cycle C^{\prime} containing v. Then we can concatenate C and C^{\prime} to get a longer circuit in G, contradicting maximality of C.

We can now derive a similar result for Eulerian trails.
Corollary 1.7: Given a graph G and distinct vertices u and v in it, G has an Eulerian u, v-trail if and only if
(a) degree of every vertex in $V(G)-\{u, v\}$ is even, degrees of u and v are odd, and
(b) G has at most one nontrivial component.

We can now derive a similar result for Eulerian trails.
Corollary 1.7: Given a graph G and distinct vertices u and v in it, G has an Eulerian u, v-trail if and only if
(a) degree of every vertex in $V(G)-\{u, v\}$ is even, degrees of u and v are odd, and
(b) G has at most one nontrivial component.

Proof. Note that G has an Eulerian u, v-trail if and only if the graph G^{\prime} obtained by adding to G an extra edge e with ends u and v has an Eulerian circuit.

We can now derive a similar result for Eulerian trails.
Corollary 1.7: Given a graph G and distinct vertices u and v in it, G has an Eulerian u, v-trail if and only if
(a) degree of every vertex in $V(G)-\{u, v\}$ is even, degrees of u and v are odd, and
(b) G has at most one nontrivial component.

Proof. Note that G has an Eulerian u, v-trail if and only if the graph G^{\prime} obtained by adding to G an extra edge e with ends u and v has an Eulerian circuit.

Now, Theorem 1.6 for G^{\prime} implies our corollary for G.

Extremal problems on graphs

By extremal problems on graphs we mean problems when we ask for either the minimum or the maximum number of edges in n-vertex graphs with given properties.
A very typical extremal problem was resolved by Mantel in 1907: he determined the maximum number of edges in an n-vertex simple graph with no triangles.

Extremal problems on graphs

By extremal problems on graphs we mean problems when we ask for either the minimum or the maximum number of edges in n-vertex graphs with given properties.
A very typical extremal problem was resolved by Mantel in 1907: he determined the maximum number of edges in an n-vertex simple graph with no triangles.

Theorem 1.8 (Theorem 1.3.22) Mantel's Theorem, 1907: Let $f(n)$ be the maximum number of edges in a simple n-vertex graph with no triangles. For each $n \geq 1, f(n)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$.

Extremal problems on graphs

By extremal problems on graphs we mean problems when we ask for either the minimum or the maximum number of edges in n-vertex graphs with given properties.
A very typical extremal problem was resolved by Mantel in 1907: he determined the maximum number of edges in an n-vertex simple graph with no triangles.

Theorem 1.8 (Theorem 1.3.22) Mantel's Theorem, 1907: Let $f(n)$ be the maximum number of edges in a simple n-vertex graph with no triangles. For each $n \geq 1, f(n)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$.
Proof. The fact that $f(n) \geq\left\lfloor\frac{n^{2}}{4}\right\rfloor$ follows from the example of the complete bipartite graph $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$, since it is bipartite (and thus has no 3 -cycles) and has exactly $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.

