
Eulerian circuits

Lecture 4



Lemma 1.2 (Lemma 1.2.15 in the book) : Every closed walk of
odd length contains an odd cycle.

Proof. We use induction on the length ℓ of the closed walk W . If
ℓ = 1, then W is a loop, i.e., a cycle of length 1.
Now, assume ℓ > 1. Consider W starting and ending at a
vertex u. If W does not contain any repeated vertices (except
starting and ending at u), then W is a cycle. So we assume
that W contains a repeated vertex v .

Consider W as a walk starting at v , and note that we can split
W into two shorter closed walks, W ′ and W ′′, both starting at v .
Since W had an odd number of edges, either W ′ or W ′′ also
has an odd number of edges. So by induction, it contains an
odd cycle, which is also contained in W .
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Lemma 1.5: (1) If δ(G) ≥ 2, then G has a cycle;
(2) If every degree of G is even, then we can partition E(G) into
cycles.

Proof. We have proved (1) in the last lecture..

We prove (2) by induction on |E(G)| using (1). If |E(G)| = 0,
there is nothing to prove.
Suppose (2) holds for every G with less than m edges, and G is
a graph with m edges in which degree of each vertex is even.

Let G1 be a nontrivial component of G. By (1), G1 has a cycle,
say C0. Let G2 be obtained from G by deleting all edges of C0.

Then degrees of all vertices in G2 are even. By induction,
E(G2) can be partitioned into edge sets of cycles, say
C1, . . . ,Ct .
Hence E(G) can be partitioned into edge sets of cycles
C1, . . . ,Ct and C0.
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Eulerian circuits

A circuit is a closed trail in which the first edge is not specified
but the cyclic order is kept.
An Eulerian circuit (resp., an Eulerian trail) in a graph G is a
circuit (resp., trail) containing all edges of G.

In Königsberg Bridge Problem, the citizens were asking about
Eulerian circuit or trail.

Recall that for the existence of an Eulerian circuit in G it is
necessary that degree of every vertex in G is even.

Another necessary condition is that G has at most one
nontrivial component (isolated vertices do not count).
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Theorem 1.6 (Theorem 1.2.26) Euler’s Theorem: A graph G
has an Eulerian circuit if and only if
(a) degree of every vertex in G is even, and
(b) G has at most one nontrivial component.

Proof. Necessity was already proved. Consider now a graph G
satisfying both, (a) and (b).

Let C be a longest circuit in G. If C contains every edge, this is
an Eulerian circuit and we are done.

If not, consider the subgraph G′ ⊆ G with V (G′) = V (G) and
E(G′) = E(G) \ E(C) (i.e. we delete all the edges in C from G).
Since every vertex has even degree in C (by virtue of C being a
circuit) and even degree in G, every vertex also has even
degree in G′. Since G is connected, there must be a vertex v
that has positive degree in both G′ and C.

By Lemma 1.5(2), G′ has a cycle C′ containing v . Then we can
concatenate C and C′ to get a longer circuit in G, contradicting
maximality of C.
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We can now derive a similar result for Eulerian trails.
Corollary 1.7: Given a graph G and distinct vertices u and v in
it, G has an Eulerian u, v -trail if and only if
(a) degree of every vertex in V (G)− {u, v} is even, degrees of
u and v are odd, and
(b) G has at most one nontrivial component.

Proof. Note that G has an Eulerian u, v -trail if and only if the
graph G′ obtained by adding to G an extra edge e with ends u
and v has an Eulerian circuit.

Now, Theorem 1.6 for G′ implies our corollary for G.
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Extremal problems on graphs
By extremal problems on graphs we mean problems when we
ask for either the minimum or the maximum number of edges in
n-vertex graphs with given properties.
A very typical extremal problem was resolved by Mantel in
1907: he determined the maximum number of edges in an
n-vertex simple graph with no triangles.

Theorem 1.8 (Theorem 1.3.22) Mantel’s Theorem, 1907: Let
f (n) be the maximum number of edges in a simple n-vertex
graph with no triangles. For each n ≥ 1, f (n) =

⌊
n2

4

⌋
.

Proof. The fact that f (n) ≥
⌊

n2

4

⌋
follows from the example of the

complete bipartite graph K⌊ n
2⌋,⌈ n

2⌉, since it is bipartite (and thus

has no 3-cycles) and has exactly
⌊

n2

4

⌋
edges.
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