Mantel's Theorem, degree sequences

Lecture 5

Extremal problems on graphs

By extremal problems on graphs we mean problems when we ask for either the minimum or the maximum number of edges in n-vertex graphs with given properties.
A very typical extremal problem was resolved by Mantel in 1907: he determined the maximum number of edges in an n-vertex simple graph with no triangles.

Theorem 1.8 (Theorem 1.3.22) Mantel's Theorem, 1907: Let $f(n)$ be the maximum number of edges in a simple n-vertex graph with no triangles. For each $n \geq 1, f(n)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$.
Proof. The fact that $f(n) \geq\left\lfloor\frac{n^{2}}{4}\right\rfloor$ follows from the example of the complete bipartite graph $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$, since it is bipartite (and thus has no 3 -cycles) and has exactly $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.

We prove the inequality

$$
\begin{equation*}
f(n) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor \tag{1}
\end{equation*}
$$

by induction on n.

We prove the inequality

$$
\begin{equation*}
f(n) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor . \tag{1}
\end{equation*}
$$

by induction on n.
The only 1 -vertex simple graph is K_{1}, and $\left|E\left(K_{1}\right)\right|=0=\left\lfloor\frac{1^{2}}{4}\right\rfloor$. Similarly, K_{2} has the most edges among the two simple 2-vertex graphs, and $\left|E\left(K_{2}\right)\right|=1=\left\lfloor\frac{2^{2}}{4}\right\rfloor$.

We prove the inequality

$$
\begin{equation*}
f(n) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor \tag{1}
\end{equation*}
$$

by induction on n.
The only 1 -vertex simple graph is K_{1}, and $\left|E\left(K_{1}\right)\right|=0=\left\lfloor\frac{1^{2}}{4}\right\rfloor$. Similarly, K_{2} has the most edges among the two simple 2-vertex graphs, and $\left|E\left(K_{2}\right)\right|=1=\left\lfloor\frac{2^{2}}{4}\right\rfloor$.

Suppose now that (1) holds for all $n \leq k-1$ and let G be a simple k-vertex graph with no 3-cycles and $|E(G)|=f(k)$. Let $x y$ be any fixed edge in G. Since G has no 3-cycles, every $z \in V(G)-x-y$ is adjacent to at most one of x and y. Thus

Let $G^{\prime}=G-x-y$. By construction, G^{\prime} is a simple
$(k-2)$-vertex triangle-free graph. By the induction assumption, $\left|E\left(G^{\prime}\right)\right| \leq f(k-2)=\left\lfloor\frac{(k-2)^{2}}{4}\right\rfloor$. But then by (2),

Let $G^{\prime}=G-x-y$. By construction, G^{\prime} is a simple $(k-2)$-vertex triangle-free graph. By the induction assumption, $\left|E\left(G^{\prime}\right)\right| \leq f(k-2)=\left\lfloor\frac{(k-2)^{2}}{4}\right\rfloor$. But then by (2),

$$
\begin{aligned}
|E(G)| & \leq\left|E\left(G^{\prime}\right)\right|+k-1 \leq\left\lfloor\frac{(k-2)^{2}}{4}\right\rfloor+k-1 \\
& =\left\lfloor\frac{(k-2)^{2}+4(k-1)}{4}\right\rfloor=\left\lfloor\frac{k^{2}}{4}\right\rfloor
\end{aligned}
$$

as claimed. This proves the induction step and thus the theorem.

Let $G^{\prime}=G-x-y$. By construction, G^{\prime} is a simple $(k-2)$-vertex triangle-free graph. By the induction assumption, $\left|E\left(G^{\prime}\right)\right| \leq f(k-2)=\left\lfloor\frac{(k-2)^{2}}{4}\right\rfloor$. But then by (2),

$$
\begin{aligned}
|E(G)| & \leq\left|E\left(G^{\prime}\right)\right|+k-1 \leq\left\lfloor\frac{(k-2)^{2}}{4}\right\rfloor+k-1 \\
& =\left\lfloor\frac{(k-2)^{2}+4(k-1)}{4}\right\rfloor=\left\lfloor\frac{k^{2}}{4}\right\rfloor
\end{aligned}
$$

as claimed. This proves the induction step and thus the theorem.

An example of an incorrect proof.

Degree sequences

Proposition 1.9: A sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers is the degree sequence of a graph if and only if $\sum_{i=1}^{n} d_{i}$ is even.

Degree sequences

Proposition 1.9: A sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers is the degree sequence of a graph if and only if $\sum_{i=1}^{n} d_{i}$ is even.

Proof. One direction follows from the Degree Sum Formula. The opposite direction is constructive.

Degree sequences

Proposition 1.9: A sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers is the degree sequence of a graph if and only if $\sum_{i=1}^{n} d_{i}$ is even.

Proof. One direction follows from the Degree Sum Formula. The opposite direction is constructive.

A sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers is called graphic if it is the degree sequence of a simple graph. Examples.

Degree sequences

Proposition 1.9: A sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers is the degree sequence of a graph if and only if $\sum_{i=1}^{n} d_{i}$ is even.

Proof. One direction follows from the Degree Sum Formula. The opposite direction is constructive.

A sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers is called graphic if it is the degree sequence of a simple graph. Examples.

Theorem 1.10 (Theorem 1.3.31) Havel-Hakimi: The only graphic sequence of length 1 is (0). For $n>1$ a sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ of integers with $d_{1} \geq d_{2} \geq \ldots \geq d_{n} \geq 0$ is graphic if and only if the sequence $\mathbf{d}^{\prime}=\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}\right)$ is graphic.

Example: (5, 5, 3, 3, 2, 2, 1, 1).

Proof. ($\Longleftarrow)$ Suppose \mathbf{d}^{\prime} is graphic. Let G^{\prime} be a simple graph with degree sequence \mathbf{d}^{\prime} and vertex set $\left\{v_{2}, \ldots, v_{n}\right\}$ where $d_{G^{\prime}}\left(v_{i}\right)=d_{i-1}^{\prime}$. Let G be the graph obtained by adding to G^{\prime} a new vertex v_{1} adjacent to $v_{2}, \ldots, v_{d_{1}+1}$. Then the degree sequence of G is \mathbf{d}. Thus \mathbf{d} is graphic.

Proof. ($\Longleftarrow)$ Suppose \mathbf{d}^{\prime} is graphic. Let G^{\prime} be a simple graph with degree sequence \mathbf{d}^{\prime} and vertex set $\left\{v_{2}, \ldots, v_{n}\right\}$ where $d_{G^{\prime}}\left(v_{i}\right)=d_{i-1}^{\prime}$.
Let G be the graph obtained by adding to G^{\prime} a new vertex v_{1} adjacent to $v_{2}, \ldots, v_{d_{1}+1}$. Then the degree sequence of G is \mathbf{d}. Thus \mathbf{d} is graphic.
(\Longrightarrow) Suppose \mathbf{d} is graphic. Among the simple graphs with degree sequence \mathbf{d} and vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ where the degree of v_{i} is d_{i} for all i, choose a graph G in which
v_{1} has the most neighbors in $S=\left\{v_{2}, \ldots, v_{d_{1}+1}\right\}$.

Proof. ($\Longleftarrow)$ Suppose \mathbf{d}^{\prime} is graphic. Let G^{\prime} be a simple graph with degree sequence \mathbf{d}^{\prime} and vertex set $\left\{v_{2}, \ldots, v_{n}\right\}$ where $d_{G^{\prime}}\left(v_{i}\right)=d_{i-1}^{\prime}$.
Let G be the graph obtained by adding to G^{\prime} a new vertex v_{1} adjacent to $v_{2}, \ldots, v_{d_{1}+1}$. Then the degree sequence of G is \mathbf{d}. Thus \mathbf{d} is graphic.
(\Longrightarrow) Suppose \mathbf{d} is graphic. Among the simple graphs with degree sequence \mathbf{d} and vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ where the degree of v_{i} is d_{i} for all i, choose a graph G in which
v_{1} has the most neighbors in $S=\left\{v_{2}, \ldots, v_{d_{1}+1}\right\}$.
If $N_{G}\left(v_{1}\right)=S$, then the degree sequence of $G-v_{1}$ is \mathbf{d}^{\prime}, and hence \mathbf{d}^{\prime} is graphic. Thus assume v_{1} is not adjacent to some $v_{i} \in S$.

In this case, v_{1} has a neighbor $v_{j} \notin S$. Since $i<j, d_{i} \geq d_{j}$. Moreover, v_{i} is not adjacent to v_{1} while v_{j} is. Together with $d_{i} \geq d_{j}$, this yields that there is $v_{k} \in V$ adjacent to v_{i} but not to v_{j}.

In this case, v_{1} has a neighbor $v_{j} \notin S$. Since $i<j, d_{i} \geq d_{j}$. Moreover, v_{i} is not adjacent to v_{1} while v_{j} is. Together with $d_{i} \geq d_{j}$, this yields that there is $v_{k} \in V$ adjacent to v_{i} but not to v_{j}.

Then the graph G_{1} obtained from G by deleting edges $v_{1} v_{j}$ and $v_{i} v_{k}$ and adding edges $v_{1} v_{i}$ and $v_{j} v_{k}$ is a simple graph with the same degree sequence as G. But in this graph, v_{1} has more neighbors in S, contradicting (3).

