Mantel's Theorem, degree sequences

Lecture 5

Extremal problems on graphs

By extremal problems on graphs we mean problems when we ask for either the minimum or the maximum number of edges in *n*-vertex graphs with given properties.

A very typical extremal problem was resolved by Mantel in 1907: he determined the maximum number of edges in an *n*-vertex simple graph with no triangles.

Theorem 1.8 (Theorem 1.3.22) **Mantel's Theorem, 1907**: Let f(n) be the maximum number of edges in a simple *n*-vertex graph with no triangles. For each $n \ge 1$, $f(n) = \left\lfloor \frac{n^2}{4} \right\rfloor$.

Proof. The fact that $f(n) \ge \lfloor \frac{n^2}{4} \rfloor$ follows from the example of the complete bipartite graph $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$, since it is bipartite (and thus has no 3-cycles) and has exactly $\lfloor \frac{n^2}{4} \rfloor$ edges.

We prove the inequality

$$f(n) \leq \left\lfloor \frac{n^2}{4} \right\rfloor. \tag{1}$$

by induction on *n*.

We prove the inequality

$$f(n) \leq \left\lfloor \frac{n^2}{4} \right\rfloor. \tag{1}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

by induction on *n*.

The only 1-vertex simple graph is K_1 , and $|E(K_1)| = 0 = \lfloor \frac{1^2}{4} \rfloor$. Similarly, K_2 has the most edges among the two simple 2-vertex graphs, and $|E(K_2)| = 1 = \lfloor \frac{2^2}{4} \rfloor$. We prove the inequality

$$f(n) \leq \left\lfloor \frac{n^2}{4} \right\rfloor.$$
 (1)

by induction on *n*.

The only 1-vertex simple graph is K_1 , and $|E(K_1)| = 0 = \lfloor \frac{1^2}{4} \rfloor$. Similarly, K_2 has the most edges among the two simple 2-vertex graphs, and $|E(K_2)| = 1 = \lfloor \frac{2^2}{4} \rfloor$.

Suppose now that (1) holds for all $n \le k - 1$ and let *G* be a simple k-vertex graph with no 3-cycles and |E(G)| = f(k). Let *xy* be any fixed edge in *G*. Since *G* has no 3-cycles, every $z \in V(G) - x - y$ is adjacent to at most one of *x* and *y*. Thus

the number of edges incident to x or y is at most k - 1. (2)

Let G' = G - x - y. By construction, G' is a simple (k - 2)-vertex triangle-free graph. By the induction assumption, $|E(G')| \le f(k - 2) = \left\lfloor \frac{(k-2)^2}{4} \right\rfloor$. But then by (2),

(日) (日) (日) (日) (日) (日) (日)

Let G' = G - x - y. By construction, G' is a simple (k - 2)-vertex triangle-free graph. By the induction assumption, $|E(G')| \le f(k - 2) = \left\lfloor \frac{(k-2)^2}{4} \right\rfloor$. But then by (2),

$$egin{aligned} E(G) &|\leq |E(G')|+k-1 \leq \left\lfloor rac{(k-2)^2}{4}
ight
floor +k-1 \ &= \left\lfloor rac{(k-2)^2+4(k-1)}{4}
ight
floor = \left\lfloor rac{k^2}{4}
ight
floor, \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

as claimed. This proves the induction step and thus the theorem.

Let G' = G - x - y. By construction, G' is a simple (k - 2)-vertex triangle-free graph. By the induction assumption, $|E(G')| \le f(k - 2) = \left\lfloor \frac{(k-2)^2}{4} \right\rfloor$. But then by (2),

$$egin{aligned} E(G) &|\leq |E(G')|+k-1 \leq \left\lfloor rac{(k-2)^2}{4}
ight
floor +k-1 \ &= \left\lfloor rac{(k-2)^2+4(k-1)}{4}
ight
floor = \left\lfloor rac{k^2}{4}
ight
floor, \end{aligned}$$

(日) (日) (日) (日) (日) (日) (日)

as claimed. This proves the induction step and thus the theorem.

An example of an incorrect proof.

Proposition 1.9: A sequence $\mathbf{d} = (d_1, \dots, d_n)$ of nonnegative integers is the degree sequence of a graph if and only if $\sum_{i=1}^{n} d_i$ is even.

Proposition 1.9: A sequence $\mathbf{d} = (d_1, \dots, d_n)$ of nonnegative integers is the degree sequence of a graph if and only if $\sum_{i=1}^{n} d_i$ is even.

Proof. One direction follows from the Degree Sum Formula. The opposite direction is constructive.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proposition 1.9: A sequence $\mathbf{d} = (d_1, \dots, d_n)$ of nonnegative integers is the degree sequence of a graph if and only if $\sum_{i=1}^{n} d_i$ is even.

Proof. One direction follows from the Degree Sum Formula. The opposite direction is constructive.

A sequence $\mathbf{d} = (d_1, \dots, d_n)$ of nonnegative integers is called **graphic** if it is the degree sequence of a **simple graph**. Examples.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proposition 1.9: A sequence $\mathbf{d} = (d_1, \dots, d_n)$ of nonnegative integers is the degree sequence of a graph if and only if $\sum_{i=1}^{n} d_i$ is even.

Proof. One direction follows from the Degree Sum Formula. The opposite direction is constructive.

A sequence $\mathbf{d} = (d_1, \dots, d_n)$ of nonnegative integers is called **graphic** if it is the degree sequence of a **simple graph**. Examples.

Theorem 1.10 (Theorem 1.3.31) **Havel–Hakimi**: The only graphic sequence of length 1 is (0). For n > 1 a sequence $\mathbf{d} = (d_1, \ldots, d_n)$ of integers with $d_1 \ge d_2 \ge \ldots \ge d_n \ge 0$ is graphic if and only if the sequence $\mathbf{d}' = (d_2 - 1, d_3 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n)$ is graphic. Example: (5, 5, 3, 3, 2, 2, 1, 1).

Proof. (\Leftarrow) Suppose **d**' is graphic. Let *G*' be a simple graph with degree sequence **d**' and vertex set { v_2, \ldots, v_n } where $d_{G'}(v_i) = d'_{i-1}$. Let *G* be the graph obtained by adding to *G*' a new vertex v_1 adjacent to v_2, \ldots, v_{d_1+1} . Then the degree sequence of *G* is **d**. Thus **d** is graphic.

(ロ) (同) (三) (三) (三) (○) (○)

Proof. (\Leftarrow) Suppose **d**' is graphic. Let *G*' be a simple graph with degree sequence **d**' and vertex set { v_2, \ldots, v_n } where $d_{G'}(v_i) = d'_{i-1}$. Let *G* be the graph obtained by adding to *G*' a new vertex v_1 adjacent to v_2, \ldots, v_{d_1+1} . Then the degree sequence of *G* is **d**. Thus **d** is graphic.

 (\Longrightarrow) Suppose **d** is graphic. Among the simple graphs with degree sequence **d** and vertex set $V = \{v_1, v_2, ..., v_n\}$ where the degree of v_i is d_i for all *i*, choose a graph *G* in which

 v_1 has the most neighbors in $S = \{v_2, ..., v_{d_1+1}\}$. (3)

Proof. (\Leftarrow) Suppose **d**' is graphic. Let *G*' be a simple graph with degree sequence **d**' and vertex set { v_2, \ldots, v_n } where $d_{G'}(v_i) = d'_{i-1}$. Let *G* be the graph obtained by adding to *G*' a new vertex v_1 adjacent to v_2, \ldots, v_{d_1+1} . Then the degree sequence of *G* is **d**. Thus **d** is graphic.

 (\Longrightarrow) Suppose **d** is graphic. Among the simple graphs with degree sequence **d** and vertex set $V = \{v_1, v_2, ..., v_n\}$ where the degree of v_i is d_i for all *i*, choose a graph *G* in which

 v_1 has the most neighbors in $S = \{v_2, ..., v_{d_1+1}\}$. (3)

If $N_G(v_1) = S$, then the degree sequence of $G - v_1$ is **d**', and hence **d**' is graphic. Thus assume v_1 is not adjacent to some $v_i \in S$.

In this case, v_1 has a neighbor $v_j \notin S$. Since i < j, $d_i \ge d_j$. Moreover, v_i is not adjacent to v_1 while v_j is. Together with $d_i \ge d_j$, this yields that there is $v_k \in V$ adjacent to v_i but not to v_j .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In this case, v_1 has a neighbor $v_j \notin S$. Since i < j, $d_i \ge d_j$. Moreover, v_i is not adjacent to v_1 while v_j is. Together with $d_i \ge d_j$, this yields that there is $v_k \in V$ adjacent to v_i but not to v_j .

Then the graph G_1 obtained from G by deleting edges $v_1 v_j$ and $v_i v_k$ and adding edges $v_1 v_i$ and $v_j v_k$ is a simple graph with the same degree sequence as G. But in this graph, v_1 has more neighbors in S,

(日) (日) (日) (日) (日) (日) (日)

contradicting (3).