
Mantel’s Theorem, degree sequences

Lecture 5



Extremal problems on graphs
By extremal problems on graphs we mean problems when we
ask for either the minimum or the maximum number of edges in
n-vertex graphs with given properties.
A very typical extremal problem was resolved by Mantel in
1907: he determined the maximum number of edges in an
n-vertex simple graph with no triangles.

Theorem 1.8 (Theorem 1.3.22) Mantel’s Theorem, 1907: Let
f (n) be the maximum number of edges in a simple n-vertex
graph with no triangles. For each n ≥ 1, f (n) =

⌊
n2

4

⌋
.

Proof. The fact that f (n) ≥
⌊

n2

4

⌋
follows from the example of the

complete bipartite graph K⌊ n
2⌋,⌈ n

2⌉, since it is bipartite (and thus

has no 3-cycles) and has exactly
⌊

n2

4

⌋
edges.



We prove the inequality

f (n) ≤
⌊

n2

4

⌋
. (1)

by induction on n.

The only 1-vertex simple graph is K1, and |E(K1)| = 0 =
⌊

12

4

⌋
.

Similarly, K2 has the most edges among the two simple
2-vertex graphs, and |E(K2)| = 1 =

⌊
22

4

⌋
.

Suppose now that (1) holds for all n ≤ k − 1 and let G be a
simple k-vertex graph with no 3-cycles and |E(G)| = f (k). Let
xy be any fixed edge in G. Since G has no 3-cycles, every
z ∈ V (G)− x − y is adjacent to at most one of x and y . Thus

the number of edges incident to x or y is at most k − 1. (2)
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Let G′ = G − x − y . By construction, G′ is a simple
(k − 2)-vertex triangle-free graph. By the induction assumption,
|E(G′)| ≤ f (k − 2) =

⌊
(k−2)2

4

⌋
. But then by (2),

|E(G)| ≤ |E(G′)|+ k − 1 ≤
⌊
(k − 2)2

4

⌋
+ k − 1

=

⌊
(k − 2)2 + 4(k − 1)

4

⌋
=

⌊
k2

4

⌋
,

as claimed. This proves the induction step and thus the
theorem.

An example of an incorrect proof.
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Degree sequences
Proposition 1.9: A sequence d = (d1, . . . ,dn) of nonnegative
integers is the degree sequence of a graph if and only if∑n

i=1 di is even.

Proof. One direction follows from the Degree Sum Formula.
The opposite direction is constructive.

A sequence d = (d1, . . . ,dn) of nonnegative integers is called
graphic if it is the degree sequence of a simple graph.
Examples.

Theorem 1.10 (Theorem 1.3.31) Havel–Hakimi: The only
graphic sequence of length 1 is (0). For n > 1 a sequence
d = (d1, . . . ,dn) of integers with d1 ≥ d2 ≥ . . . ≥ dn ≥ 0 is
graphic if and only if the sequence
d′ = (d2 − 1,d3 − 1, . . . ,dd1+1 − 1,dd1+2, . . . ,dn) is graphic.

Example: (5,5,3,3,2,2,1,1).
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Proof. (⇐=) Suppose d′ is graphic. Let G′ be a simple graph
with degree sequence d′ and vertex set {v2, . . . , vn} where
dG′(vi) = d ′

i−1.
Let G be the graph obtained by adding to G′ a new vertex v1
adjacent to v2, . . . , vd1+1. Then the degree sequence of G is d.
Thus d is graphic.

(=⇒) Suppose d is graphic. Among the simple graphs with
degree sequence d and vertex set V = {v1, v2, . . . , vn} where
the degree of vi is di for all i , choose a graph G in which

v1 has the most neighbors in S = {v2, . . . , vd1+1}. (3)

If NG(v1) = S, then the degree sequence of G − v1 is d′, and
hence d′ is graphic. Thus assume v1 is not adjacent to some
vi ∈ S.
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In this case, v1 has a neighbor vj /∈ S. Since i < j , di ≥ dj .
Moreover, vi is not adjacent to v1 while vj is. Together with
di ≥ dj , this yields that there is vk ∈ V adjacent to vi but not to
vj .

Then the graph G1 obtained from G by deleting edges v1vj and
vivk and adding edges v1vi and vjvk is a simple graph with the
same degree sequence as G.
But in this graph, v1 has more neighbors in S,
contradicting (3).
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