
Directed graphs

Lecture 6



Revisiting graphic degree sequences
Proof. (=⇒) Suppose d is graphic. Among the simple graphs
with degree sequence d and vertex set V = {v1, v2, . . . , vn}
where the degree of vi is di for all i , choose a graph G in which

v1 has the most neighbors in S = {v2, . . . , vd1+1}. (1)

If NG(v1) = S, then the degree sequence of G− v1 is d′, and so
d′ is graphic. Thus assume v1 is not adjacent to some vi ∈ S.

In this case, v1 has a neighbor vj /∈ S. Since i < j , di ≥ dj .
And vi is not adjacent to v1 while vj is. Together with di ≥ dj ,
this yields that there is vk ∈ V adjacent to vi but not to vj .

Then the graph G1 obtained from G by deleting edges v1vj and
vivk and adding edges v1vi and vjvk is a simple graph with the
same degree sequence as G.
But in this graph, v1 has more neighbors in S, contradicting (1).



Directed graphs
Graphs are good to model symmetric binary relations, but often
we need to model antisymmetric relations.

A directed graph (a digraph) is a pair consisting of a vertex set
V = V (G), an edge set E = E(G) and a relation associating
with each e ∈ E(G) two vertices (not necessarily distinct) called
its tail and head.

One example is modeling a round-robin tournament.

Other examples are functional digraphs.

Out-neighbors and in-neighbors, degrees, outdegrees and
indegrees of vertices in digraphs. Simple digraphs.

Adjacency and incidence matrices for digraphs: definitions and
examples.
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Proposition 1.11 (Degree Sum Formula for digraphs): For
every digraph G

∑
v∈V (G) d+(v) =

∑
v∈V (G) d−(v) = |E(G)|.

Proof. Every edge contributes exactly 1 for each of the two
sums.

Paths, trails, walks and cycles in digraphs: Definitions and
examples.

Since our paths and walks are directed, there could be that our
digraph has a u, v -walk but has no v ,u-walk.

The underlying graph of a digraph D is the graph G s.t.
V (G) = V (D) and every directed edge of D constitutes a
unique (undirected) edge of G.

Connected and weakly connected digraphs.
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Theorem 1.12 (Theorem 1.4.24) Euler’s Theorem for
digraphs: A digraph G has an Eulerian circuit if and only if
(a) d+(v) = d−(v) for every vertex v in G and
(b) G has at most one nontrivial weak component.

To prove it, we can use an analog of Lemma 1.5:
Lemma 1.13: If d+(v) = d−(v) for every vertex v in G, then we
can partition E(G) into (directed) cycles.

Proof. As in Lemma 1.5, consider the longest (directed) paths
in G and use induction on the number of edges.

Proof of Theorem 1.12 now practically repeats the proof of
Theorem 1.6 with Lemma 1.13 replacing Lemma 1.5: choose a
largest circuit in G, and if does not contain all edges, then we
are able to enlarge it.
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de Bruijn graphs
The vertices of the de Bruijn graph Bn are the n-dimensional
0,1-vectors.
And Bn has an edge from (α1, . . . , αn) to (β1, . . . , βn) if and only
if

α2 = β1, α3 = β2, . . . , αn = βn−1.
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This proves Claim 1.


