Directed graphs

Lecture 6

Revisiting graphic degree sequences

Proof. (\Longrightarrow) Suppose \mathbf{d} is graphic. Among the simple graphs with degree sequence \mathbf{d} and vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ where the degree of v_{i} is d_{i} for all i, choose a graph G in which

$$
\begin{equation*}
v_{1} \text { has the most neighbors in } S=\left\{v_{2}, \ldots, v_{d_{1}+1}\right\} . \tag{1}
\end{equation*}
$$

If $N_{G}\left(v_{1}\right)=S$, then the degree sequence of $G-v_{1}$ is \mathbf{d}^{\prime}, and so \mathbf{d}^{\prime} is graphic. Thus assume v_{1} is not adjacent to some $v_{i} \in S$.

In this case, v_{1} has a neighbor $v_{j} \notin S$. Since $i<j, d_{i} \geq d_{j}$. And v_{i} is not adjacent to v_{1} while v_{j} is. Together with $d_{i} \geq d_{j}$, this yields that there is $v_{k} \in V$ adjacent to v_{i} but not to v_{j}.

Then the graph G_{1} obtained from G by deleting edges $v_{1} v_{j}$ and $v_{i} v_{k}$ and adding edges $v_{1} v_{i}$ and $v_{j} v_{k}$ is a simple graph with the same degree sequence as G.
But in this graph, v_{1} has more neighbors in S, contradicting (1).

Directed graphs

Graphs are good to model symmetric binary relations, but often we need to model antisymmetric relations.

A directed graph (a digraph) is a pair consisting of a vertex set $V=V(G)$, an edge set $E=E(G)$ and a relation associating with each $e \in E(G)$ two vertices (not necessarily distinct) called its tail and head.

Directed graphs

Graphs are good to model symmetric binary relations, but often we need to model antisymmetric relations.

A directed graph (a digraph) is a pair consisting of a vertex set
$V=V(G)$, an edge set $E=E(G)$ and a relation associating with each $e \in E(G)$ two vertices (not necessarily distinct) called its tail and head.

One example is modeling a round-robin tournament.
Other examples are functional digraphs.

Directed graphs

Graphs are good to model symmetric binary relations, but often we need to model antisymmetric relations.

A directed graph (a digraph) is a pair consisting of a vertex set $V=V(G)$, an edge set $E=E(G)$ and a relation associating with each $e \in E(G)$ two vertices (not necessarily distinct) called its tail and head.

One example is modeling a round-robin tournament.
Other examples are functional digraphs.
Out-neighbors and in-neighbors, degrees, outdegrees and indegrees of vertices in digraphs. Simple digraphs.

Adjacency and incidence matrices for digraphs: definitions and examples.

Proposition 1.11 (Degree Sum Formula for digraphs): For every digraph $G \sum_{v \in V(G)} d^{+}(v)=\sum_{v \in V(G)} d^{-}(v)=|E(G)|$.

Proposition 1.11 (Degree Sum Formula for digraphs): For every digraph $G \sum_{v \in V(G)} d^{+}(v)=\sum_{v \in V(G)} d^{-}(v)=|E(G)|$.

Proof. Every edge contributes exactly 1 for each of the two sums.

Proposition 1.11 (Degree Sum Formula for digraphs): For every digraph $G \sum_{v \in V(G)} d^{+}(v)=\sum_{v \in V(G)} d^{-}(v)=|E(G)|$.

Proof. Every edge contributes exactly 1 for each of the two sums.

Paths, trails, walks and cycles in digraphs: Definitions and examples.

Since our paths and walks are directed, there could be that our digraph has a u, v-walk but has no v, u-walk.

Proposition 1.11 (Degree Sum Formula for digraphs): For every digraph $G \sum_{v \in V(G)} d^{+}(v)=\sum_{v \in V(G)} d^{-}(v)=|E(G)|$.

Proof. Every edge contributes exactly 1 for each of the two sums.

Paths, trails, walks and cycles in digraphs: Definitions and examples.

Since our paths and walks are directed, there could be that our digraph has a u, v-walk but has no v, u-walk.

The underlying graph of a digraph D is the graph G s.t. $V(G)=V(D)$ and every directed edge of D constitutes a unique (undirected) edge of G.

Connected and weakly connected digraphs.

Theorem 1.12 (Theorem 1.4.24) Euler's Theorem for
digraphs: A digraph G has an Eulerian circuit if and only if
(a) $d^{+}(v)=d^{-}(v)$ for every vertex v in G and
(b) G has at most one nontrivial weak component.

Theorem 1.12 (Theorem 1.4.24) Euler's Theorem for
digraphs: A digraph G has an Eulerian circuit if and only if
(a) $d^{+}(v)=d^{-}(v)$ for every vertex v in G and
(b) G has at most one nontrivial weak component.

To prove it, we can use an analog of Lemma 1.5:
Lemma 1.13: If $d^{+}(v)=d^{-}(v)$ for every vertex v in G, then we can partition $E(G)$ into (directed) cycles.

Theorem 1.12 (Theorem 1.4.24) Euler's Theorem for
digraphs: A digraph G has an Eulerian circuit if and only if
(a) $d^{+}(v)=d^{-}(v)$ for every vertex v in G and
(b) G has at most one nontrivial weak component.

To prove it, we can use an analog of Lemma 1.5:
Lemma 1.13: If $d^{+}(v)=d^{-}(v)$ for every vertex v in G, then we can partition $E(G)$ into (directed) cycles.

Proof. As in Lemma 1.5, consider the longest (directed) paths in G and use induction on the number of edges.

Theorem 1.12 (Theorem 1.4.24) Euler's Theorem for
digraphs: A digraph G has an Eulerian circuit if and only if
(a) $d^{+}(v)=d^{-}(v)$ for every vertex v in G and
(b) G has at most one nontrivial weak component.

To prove it, we can use an analog of Lemma 1.5:
Lemma 1.13: If $d^{+}(v)=d^{-}(v)$ for every vertex v in G, then we can partition $E(G)$ into (directed) cycles.

Proof. As in Lemma 1.5, consider the longest (directed) paths in G and use induction on the number of edges.

Proof of Theorem 1.12 now practically repeats the proof of Theorem 1.6 with Lemma 1.13 replacing Lemma 1.5: choose a largest circuit in G, and if does not contain all edges, then we are able to enlarge it.

de Bruijn graphs

The vertices of the de Bruijn graph B_{n} are the n-dimensional 0,1-vectors.
And B_{n} has an edge from $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ to $\left(\beta_{1}, \ldots, \beta_{n}\right)$ if and only if

$$
\alpha_{2}=\beta_{1}, \alpha_{3}=\beta_{2}, \ldots, \alpha_{n}=\beta_{n-1} .
$$

de Bruijn graphs

