Directed graphs

Lecture 7

Connected and weakly connected digraphs.
Theorem 1.12 (Theorem 1.4.24) Euler's Theorem for
digraphs: A digraph G has an Eulerian circuit if and only if
(a) $d^{+}(v)=d^{-}(v)$ for every vertex v in G and
(b) G has at most one nontrivial weak component.

Connected and weakly connected digraphs.
Theorem 1.12 (Theorem 1.4.24) Euler's Theorem for
digraphs: A digraph G has an Eulerian circuit if and only if
(a) $d^{+}(v)=d^{-}(v)$ for every vertex v in G and
(b) G has at most one nontrivial weak component.

To prove it, we can use an analog of Lemma 1.5:
Lemma 1.13: If $d^{+}(v)=d^{-}(v)$ for every vertex v in G, then we can partition $E(G)$ into (directed) cycles.
Proof. As in Lemma 1.5, consider the longest (directed) paths in G and use induction on the number of edges.

Connected and weakly connected digraphs.
Theorem 1.12 (Theorem 1.4.24) Euler's Theorem for
digraphs: A digraph G has an Eulerian circuit if and only if
(a) $d^{+}(v)=d^{-}(v)$ for every vertex v in G and
(b) G has at most one nontrivial weak component.

To prove it, we can use an analog of Lemma 1.5:
Lemma 1.13: If $d^{+}(v)=d^{-}(v)$ for every vertex v in G, then we can partition $E(G)$ into (directed) cycles.

Proof. As in Lemma 1.5, consider the longest (directed) paths in G and use induction on the number of edges.

Proof of Theorem 1.12 now practically repeats the proof of Theorem 1.6 with Lemma 1.13 replacing Lemma 1.5: choose a largest circuit in G, and if does not contain all edges, then we are able to enlarge it.

de Bruijn graphs

The vertices of the de Bruijn graph B_{n} are the n-dimensional 0,1-vectors.
And B_{n} has an edge from $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ to $\left(\beta_{1}, \ldots, \beta_{n}\right)$ if and only if $\alpha_{2}=\beta_{1}, \alpha_{3}=\beta_{2}, \ldots, \alpha_{n}=\beta_{n-1}$.

de Bruijn graphs

de Bruijn graphs have nice properties: they are sparse but one can reach each vertex from any other vertex in n steps.

Also all n-edge paths in B_{n} starting from any fixed vertex end at different vertices.

Also B_{n} has Eulerian circuits.
de Bruijn graphs have nice properties: they are sparse but one can reach each vertex from any other vertex in n steps.

Also all n-edge paths in B_{n} starting from any fixed vertex end at different vertices.

Also B_{n} has Eulerian circuits.

Consider the following problem: Is there a cyclic arrangement of 2^{n} binary digits such that all 2^{n} strings of n consecutive digits are all distinct?
de Bruijn graphs have nice properties: they are sparse but one can reach each vertex from any other vertex in n steps.

Also all n-edge paths in B_{n} starting from any fixed vertex end at different vertices.

Also B_{n} has Eulerian circuits.

Consider the following problem: Is there a cyclic arrangement of 2^{n} binary digits such that all 2^{n} strings of n consecutive digits are all distinct?

Every Eulerian circuit in B_{n-1} yields such a cyclic arrangement.

Kings in tournaments

A vertex v in a digraph D is a king if every vertex in D can be reached from v by a (directed) path of length at most 2.

Theorem 1.14 (Landau, 1953): Every tournament has a king. Moreover, in every tournament each vertex of maximum out-degree is a king.

Kings in tournaments

A vertex v in a digraph D is a king if every vertex in D can be reached from v by a (directed) path of length at most 2 .

Theorem 1.14 (Landau, 1953): Every tournament has a king. Moreover, in every tournament each vertex of maximum out-degree is a king.

Proof. Let x be a vertex of maximum out-degree in a tournament T.

Note that $V(T)=\{x\} \cup N^{+}(x) \cup N^{-}(x)$. If x is not a king, then there should be $y \in V(T)$ not reachable from x in at most two steps. Such y must be in $N^{-}(x)$. Fix this y.

Kings in tournaments

A vertex v in a digraph D is a king if every vertex in D can be reached from v by a (directed) path of length at most 2 .

Theorem 1.14 (Landau, 1953): Every tournament has a king. Moreover, in every tournament each vertex of maximum out-degree is a king.

Proof. Let x be a vertex of maximum out-degree in a tournament T.

Note that $V(T)=\{x\} \cup N^{+}(x) \cup N^{-}(x)$. If x is not a king, then there should be $y \in V(T)$ not reachable from x in at most two steps. Such y must be in $N^{-}(x)$. Fix this y.

For each $z \in N^{+}(x), y z \in E(T)$ since otherwise (x, z, y) would be our path. But then $N^{+}(x) \subset N^{+}(y)$ and $d^{+}(x)<d^{+}(y)$, contradicting the choice of x.

Main theorems in Chapter 1:

1. König's Theorem on bipartite graphs.

Main theorems in Chapter 1:

1. König's Theorem on bipartite graphs.
2. Euler's Theorem on Eulerian circuits.

Main theorems in Chapter 1:

1. König's Theorem on bipartite graphs.
2. Euler's Theorem on Eulerian circuits.
3. Degree Sum Formula

Main theorems in Chapter 1:

1. König's Theorem on bipartite graphs.
2. Euler's Theorem on Eulerian circuits.
3. Degree Sum Formula
4. Mantel's Theorem on triangle-free graphs.

Main theorems in Chapter 1:

1. König's Theorem on bipartite graphs.
2. Euler's Theorem on Eulerian circuits.
3. Degree Sum Formula
4. Mantel's Theorem on triangle-free graphs.
5. Havel-Hakimi Theorem on graphic sequences.

Trees

A graph with no cycle is called acyclic.
A tree is a connected acyclic graph.
So, an acyclic graph is also called a forest. By definition, each component of a forest is a tree.

Lemma 2.1:
(a) Every tree with at least two vertices has at least two leaves.
(b) Deleting a leaf from a connected graph produces another connected graph.

Lemma 2.1:
(a) Every tree with at least two vertices has at least two leaves.
(b) Deleting a leaf from a connected graph produces another connected graph.

Proof. Let T be a tree on $n \geq 2$ vertices and let P be a path of maximum length in T. Then the endpoints of P must be distinct leafs, since otherwise we could find a longer path or a cycle. This proves (a).
(a) Every tree with at least two vertices has at least two leaves.
(b) Deleting a leaf from a connected graph produces another connected graph.

Proof. Let T be a tree on $n \geq 2$ vertices and let P be a path of maximum length in T. Then the endpoints of P must be distinct leafs, since otherwise we could find a longer path or a cycle. This proves (a).

Let G be a connected graph and v be a leaf in G. Let $G^{\prime}=G-v$.
Since G is connected, for any vertices $u, w \in V(G)-v$, there is a u, w-path $P(u, w)$. It does not contain v, since every internal vertex of $P(u, w)$ has degree at least 2 .

Therefore, $P(u, w)$ is in G^{\prime}. Since each $P(u, w)$ is in G^{\prime}, graph G^{\prime} is connected.

