
Directed graphs

Lecture 7



Connected and weakly connected digraphs.

Theorem 1.12 (Theorem 1.4.24) Euler’s Theorem for
digraphs: A digraph G has an Eulerian circuit if and only if
(a) d+(v) = d−(v) for every vertex v in G and
(b) G has at most one nontrivial weak component.

To prove it, we can use an analog of Lemma 1.5:
Lemma 1.13: If d+(v) = d−(v) for every vertex v in G, then we
can partition E(G) into (directed) cycles.

Proof. As in Lemma 1.5, consider the longest (directed) paths
in G and use induction on the number of edges.

Proof of Theorem 1.12 now practically repeats the proof of
Theorem 1.6 with Lemma 1.13 replacing Lemma 1.5: choose a
largest circuit in G, and if does not contain all edges, then we
are able to enlarge it.
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de Bruijn graphs
The vertices of the de Bruijn graph Bn are the n-dimensional
0,1-vectors.
And Bn has an edge from (α1, . . . , αn) to (β1, . . . , βn) if and only
if
α2 = β1, α3 = β2, . . . , αn = βn−1.
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de Bruijn graphs have nice properties: they are sparse but one
can reach each vertex from any other vertex in n steps.

Also all n-edge paths in Bn starting from any fixed vertex end
at different vertices.

Also Bn has Eulerian circuits.

Consider the following problem: Is there a cyclic arrangement
of 2n binary digits such that all 2n strings of n consecutive
digits are all distinct?

Every Eulerian circuit in Bn−1 yields such a cyclic arrangement.
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Kings in tournaments
A vertex v in a digraph D is a king if every vertex in D can be
reached from v by a (directed) path of length at most 2.

Theorem 1.14 (Landau, 1953): Every tournament has a king.
Moreover, in every tournament each vertex of maximum
out-degree is a king.

Proof. Let x be a vertex of maximum out-degree in a
tournament T .

Note that V (T ) = {x} ∪ N+(x) ∪ N−(x). If x is not a king, then
there should be y ∈ V (T ) not reachable from x in at most two
steps. Such y must be in N−(x). Fix this y .

For each z ∈ N+(x), yz ∈ E(T ) since otherwise (x , z, y) would
be our path. But then N+(x) ⊂ N+(y) and d+(x) < d+(y),
contradicting the choice of x .
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Main theorems in Chapter 1:
1. König’s Theorem on bipartite graphs.

2. Euler’s Theorem on Eulerian circuits.

3. Degree Sum Formula

4. Mantel’s Theorem on triangle-free graphs.

5. Havel-Hakimi Theorem on graphic sequences.
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Trees
A graph with no cycle is called acyclic.
A tree is a connected acyclic graph.

So, an acyclic graph is also called a forest.
By definition, each component of a forest is a tree.



Lemma 2.1:
(a) Every tree with at least two vertices has at least two leaves.
(b) Deleting a leaf from a connected graph produces another
connected graph.

Proof. Let T be a tree on n ≥ 2 vertices and let P be a path of
maximum length in T . Then the endpoints of P must be distinct
leafs, since otherwise we could find a longer path or a cycle.
This proves (a).

Let G be a connected graph and v be a leaf in G. Let
G′ = G − v .
Since G is connected, for any vertices u,w ∈ V (G)− v , there is
a u,w-path P(u,w). It does not contain v , since every internal
vertex of P(u,w) has degree at least 2.

Therefore, P(u,w) is in G′. Since each P(u,w) is in G′, graph
G′ is connected.
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