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Main theorems in Chapter 1:
1. König’s Theorem on bipartite graphs.

2. Euler’s Theorem on Eulerian circuits.

3. Degree Sum Formula

4. Mantel’s Theorem on triangle-free graphs.

5. Havel-Hakimi Theorem on graphic sequences.
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Trees
A graph with no cycle is called acyclic.
A tree is a connected acyclic graph.

So, an acyclic graph is also called a forest.
By definition, each component of a forest is a tree.



Lemma 2.1:
(a) Every tree with at least two vertices has at least two leaves.
(b) Deleting a leaf from a connected graph produces another
connected graph.

Proof. Let T be a tree on n ≥ 2 vertices and let P be a path of
maximum length in T . Then the endpoints of P must be distinct
leafs, since otherwise we could find a longer path or a cycle.
This proves (a).

Let G be a connected graph and v be a leaf in G. Let
G′ = G − v .
Since G is connected, for any vertices u,w ∈ V (G)− v , there is
a u,w-path P(u,w). It does not contain v , since every internal
vertex of P(u,w) has degree at least 2.

Therefore, P(u,w) is in G′. Since each P(u,w) is in G′, graph
G′ is connected.
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Characterization of trees
Theorem 2.2 (A characterization of trees): Let n ≥ 1. For an
n-vertex graph G, the following are equivalent
(A) G is connected and has no cycles.

(B) G is connected and has n − 1 edges.

(C) G has no cycles and has n − 1 edges.

(D) For any u, v ∈ V (G), G has exactly one u, v -path.

(F) Adding to G any edge creates a graph with exactly one
cycle.

Proof. (A) ⇒ (B,C). We use induction on n. For n = 1 the claim
is obvious. Suppose that n > 1 and every tree with k < n
vertices has exactly k −1 edges. Let G be any n-vertex tree. By
Lemma 2.1 (a), G has a leaf, say v . By Lemma 2.1 (b), G − v
has (n − 1)− 1 edges. But then G has n − 1 edges, as claimed.
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(B) ⇒ (A,C). Suppose G is connected and has n − 1 edges.
Deleting an edge from a cycle in G leaves it connected. Do this
procedure until the final graph G′ has no cycles but is
connected. By definition, G′ is a tree. Since (A) ⇒ (B), G′ has
n − 1 edges. But then G′ = G.

(C) ⇒ (A,B). Suppose G has no cycles and has n − 1 edges.
Let G1, . . . ,Gk be the components of G. Let ni (respectively, ei )
be the number of vertices (respectively, edges) in Gi . By
construction, each Gi is a tree. Since (A) ⇒ (B), for each
1 ≤ i ≤ k , ei = ni − 1. Then

n − 1 = |E(G)| =
k∑

i=1

ei =
k∑

i=1

(ni − 1) = n − k .

Thus, k = 1, as claimed.
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(A) ⇒ (D) (We prove (¬D) ⇒ (¬A)). If (D) does not hold, then
there are u, v ∈ V (G) s.t. either (a) there are no u, v -paths or
(b) there are more than one u, v -paths.
If (a) holds, then G is disconnected, and if (b) holds, then G has
a cycle. In any case, G is not a tree.
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(D) ⇒ (F) Suppose (D) holds for G and u, v ∈ V (G). Since by
(D), G has exactly one u, v -path, G + uv will have exactly one
cycle (passing through uv ).

(F) ⇒ (A) (We prove (¬A) ⇒ (¬F)). If (A) does not hold, then
either (a) G has a cycle, say C, or (b) G is disconnected.
If (a) holds, then adding an edge with both ends on C creates
at least one more cycle, so (F) does not hold.
If (a) does not hold but (b) holds, then adding an edge with
ends in distinct components would create a graph with no
cycles, violating (F) again.



(D) ⇒ (F) Suppose (D) holds for G and u, v ∈ V (G). Since by
(D), G has exactly one u, v -path, G + uv will have exactly one
cycle (passing through uv ).

(F) ⇒ (A) (We prove (¬A) ⇒ (¬F)). If (A) does not hold, then
either (a) G has a cycle, say C, or (b) G is disconnected.
If (a) holds, then adding an edge with both ends on C creates
at least one more cycle, so (F) does not hold.
If (a) does not hold but (b) holds, then adding an edge with
ends in distinct components would create a graph with no
cycles, violating (F) again.



Distances in graphs
Let G be a graph and let u, v ∈ V (G).
If u and v are in the same component of G, then the distance
from u to v is the length of the shortest u, v -path in G, and we
write dG(u, v) for this (or often just d(u, v)). If u and v are in
different components, then we define dG(u, v) = ∞.

Note that distance in undirected graphs satisfies the axioms of
a metrics: it is symmetric, satisfies triangle inequality, and
d(u,u) = 0.

The eccentricity of u in G, denoted ecc(u) or ϵ(u) is the length
of the longest path with u as an endpoint, or

ecc(u) = max
v∈V (G)

d(u, v).
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The diameter of G, diam(G), is defined as

diam(G) = max
u∈V (G)

ecc(u) = max
u,v∈V (G)

d(u, v).

Finally, the radius, rad(G) is defined to be

rad(G) = min
u∈V (G)

ecc(u).

It could be that the radius and diameter of a graph are the
same.

The center of a graph G is the induced subgraph of G whose
vertex set is the set of all vertices of eccentricity rad(G).

The center could be the whole graph.
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Theorem 2.3 (Jordan, 1869): The center of any tree is either a
vertex or two adjacent vertices.

Proof. Base: n ≤ 2.
Induction step. Suppose the theorem holds for all trees with
less than n vertices. Take any tree T with n vertices.

Let L be the set of leaves in T and T ′ = T − L.

By Lemma 2.1 (b), T ′ is a tree. We claim that

for each u ∈ V (T ′), ϵT ′(u) = ϵT (u)− 1. (1)

Indeed, each longest path in T starting from u ends at a leaf
(which is not in T ′). This shows inequality ≤.
On the other hand, if uv1v2 . . . vk−1vk is a longest path in T
starting from u, then all vertices u, v1, v2 . . . , vk−1 are in T ′.
Hence we also have ≥.
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By (1), the center of T ′ is the same as in T .

This proves Theorem 2.3.


