Trees

Lecture 8

Main theorems in Chapter 1:

1. König's Theorem on bipartite graphs.

Main theorems in Chapter 1:

1. König's Theorem on bipartite graphs.
2. Euler's Theorem on Eulerian circuits.

Main theorems in Chapter 1:

1. König's Theorem on bipartite graphs.
2. Euler's Theorem on Eulerian circuits.
3. Degree Sum Formula

Main theorems in Chapter 1:

1. König's Theorem on bipartite graphs.
2. Euler's Theorem on Eulerian circuits.
3. Degree Sum Formula
4. Mantel's Theorem on triangle-free graphs.

Main theorems in Chapter 1:

1. König's Theorem on bipartite graphs.
2. Euler's Theorem on Eulerian circuits.
3. Degree Sum Formula
4. Mantel's Theorem on triangle-free graphs.
5. Havel-Hakimi Theorem on graphic sequences.

Trees

A graph with no cycle is called acyclic.
A tree is a connected acyclic graph.
So, an acyclic graph is also called a forest. By definition, each component of a forest is a tree.

Lemma 2.1:
(a) Every tree with at least two vertices has at least two leaves.
(b) Deleting a leaf from a connected graph produces another connected graph.

Lemma 2.1:
(a) Every tree with at least two vertices has at least two leaves.
(b) Deleting a leaf from a connected graph produces another connected graph.

Proof. Let T be a tree on $n \geq 2$ vertices and let P be a path of maximum length in T. Then the endpoints of P must be distinct leafs, since otherwise we could find a longer path or a cycle. This proves (a).
(a) Every tree with at least two vertices has at least two leaves.
(b) Deleting a leaf from a connected graph produces another connected graph.

Proof. Let T be a tree on $n \geq 2$ vertices and let P be a path of maximum length in T. Then the endpoints of P must be distinct leafs, since otherwise we could find a longer path or a cycle. This proves (a).

Let G be a connected graph and v be a leaf in G. Let $G^{\prime}=G-v$.
Since G is connected, for any vertices $u, w \in V(G)-v$, there is a u, w-path $P(u, w)$. It does not contain v, since every internal vertex of $P(u, w)$ has degree at least 2 .

Therefore, $P(u, w)$ is in G^{\prime}. Since each $P(u, w)$ is in G^{\prime}, graph G^{\prime} is connected.

Characterization of trees

Theorem 2.2 (A characterization of trees): Let $n \geq 1$. For an n-vertex graph G, the following are equivalent
(A) G is connected and has no cycles.
(B) G is connected and has $n-1$ edges.

Characterization of trees

Theorem 2.2 (A characterization of trees): Let $n \geq 1$. For an n-vertex graph G, the following are equivalent
(A) G is connected and has no cycles.
(B) G is connected and has $n-1$ edges.
(C) G has no cycles and has $n-1$ edges.
(D) For any $u, v \in V(G)$, G has exactly one u, v-path.

Characterization of trees

Theorem 2.2 (A characterization of trees): Let $n \geq 1$. For an n-vertex graph G, the following are equivalent (A) G is connected and has no cycles.
(B) G is connected and has $n-1$ edges.
(C) G has no cycles and has $n-1$ edges.
(D) For any $u, v \in V(G), G$ has exactly one u, v-path.
(F) Adding to G any edge creates a graph with exactly one cycle.

Characterization of trees

Theorem 2.2 (A characterization of trees): Let $n \geq 1$. For an n-vertex graph G, the following are equivalent
(A) G is connected and has no cycles.
(B) G is connected and has $n-1$ edges.
(C) G has no cycles and has $n-1$ edges.
(D) For any $u, v \in V(G), G$ has exactly one u, v-path.
(F) Adding to G any edge creates a graph with exactly one cycle.

Proof. $(A) \Rightarrow(B, C)$. We use induction on n. For $n=1$ the claim is obvious. Suppose that $n>1$ and every tree with $k<n$ vertices has exactly $k-1$ edges. Let G be any n-vertex tree. By Lemma 2.1 (a), G has a leaf, say v. By Lemma 2.1 (b), $G-v$ has $(n-1)-1$ edges. But then G has $n-1$ edges, as claimed.
$(B) \Rightarrow(A, C)$. Suppose G is connected and has $n-1$ edges. Deleting an edge from a cycle in G leaves it connected. Do this procedure until the final graph G^{\prime} has no cycles but is connected. By definition, G^{\prime} is a tree. Since $(A) \Rightarrow(B), G^{\prime}$ has $n-1$ edges. But then $G^{\prime}=G$.
$(B) \Rightarrow(A, C)$. Suppose G is connected and has $n-1$ edges. Deleting an edge from a cycle in G leaves it connected. Do this procedure until the final graph G^{\prime} has no cycles but is connected. By definition, G^{\prime} is a tree. Since $(A) \Rightarrow(B), G^{\prime}$ has $n-1$ edges. But then $G^{\prime}=G$.
$(C) \Rightarrow(A, B)$. Suppose G has no cycles and has $n-1$ edges. Let G_{1}, \ldots, G_{k} be the components of G. Let n_{i} (respectively, e_{i}) be the number of vertices (respectively, edges) in G_{i}. By construction, each G_{i} is a tree. Since $(A) \Rightarrow(B)$, for each $1 \leq i \leq k, e_{i}=n_{i}-1$. Then

$$
n-1=|E(G)|=\sum_{i=1}^{k} e_{i}=\sum_{i=1}^{k}\left(n_{i}-1\right)=n-k
$$

Thus, $k=1$, as claimed.
$(A) \Rightarrow(D)$ (We prove $(\neg D) \Rightarrow(\neg A)$). If (D) does not hold, then there are $u, v \in V(G)$ s.t. either (a) there are no u, v-paths or (b) there are more than one u, v-paths.

If (a) holds, then G is disconnected, and if (b) holds, then G has a cycle. In any case, G is not a tree.
$(A) \Rightarrow(D)$ (We prove $(\neg D) \Rightarrow(\neg A))$. If (D) does not hold, then there are $u, v \in V(G)$ s.t. either (a) there are no u, v-paths or (b) there are more than one u, v-paths.

If (a) holds, then G is disconnected, and if (b) holds, then G has a cycle. In any case, G is not a tree.

(D) $\Rightarrow(F)$ Suppose (D) holds for G and $u, v \in V(G)$. Since by (D), G has exactly one u, v-path, $G+u v$ will have exactly one cycle (passing through $u v$).
$(\mathrm{D}) \Rightarrow(\mathrm{F})$ Suppose (D) holds for G and $u, v \in V(G)$. Since by (D), G has exactly one u, v-path, $G+u v$ will have exactly one cycle (passing through $u v$).
$(F) \Rightarrow(A)$ (We prove $(\neg A) \Rightarrow(\neg F))$. If (A) does not hold, then either (a) G has a cycle, say C, or (b) G is disconnected. If (a) holds, then adding an edge with both ends on C creates at least one more cycle, so (F) does not hold.
If (a) does not hold but (b) holds, then adding an edge with ends in distinct components would create a graph with no cycles, violating (F) again.

Distances in graphs

Let G be a graph and let $u, v \in V(G)$.
If u and v are in the same component of G, then the distance from u to v is the length of the shortest u, v-path in G, and we write $d_{G}(u, v)$ for this (or often just $d(u, v)$). If u and v are in different components, then we define $d_{G}(u, v)=\infty$.

Distances in graphs

Let G be a graph and let $u, v \in V(G)$.
If u and v are in the same component of G, then the distance from u to v is the length of the shortest u, v-path in G, and we write $d_{G}(u, v)$ for this (or often just $d(u, v)$). If u and v are in different components, then we define $d_{G}(u, v)=\infty$.

Note that distance in undirected graphs satisfies the axioms of a metrics: it is symmetric, satisfies triangle inequality, and $d(u, u)=0$.

Distances in graphs

Let G be a graph and let $u, v \in V(G)$.
If u and v are in the same component of G, then the distance from u to v is the length of the shortest u, v-path in G, and we write $d_{G}(u, v)$ for this (or often just $d(u, v)$). If u and v are in different components, then we define $d_{G}(u, v)=\infty$.

Note that distance in undirected graphs satisfies the axioms of a metrics: it is symmetric, satisfies triangle inequality, and $d(u, u)=0$.

The eccentricity of u in G, denoted $\operatorname{ecc}(u)$ or $\epsilon(u)$ is the length of the longest path with u as an endpoint, or

$$
\operatorname{ecc}(u)=\max _{v \in V(G)} d(u, v)
$$

The diameter of $G, \operatorname{diam}(G)$, is defined as

$$
\operatorname{diam}(G)=\max _{u \in V(G)} \operatorname{ecc}(u)=\max _{u, v \in V(G)} d(u, v)
$$

The diameter of $G, \operatorname{diam}(G)$, is defined as

$$
\operatorname{diam}(G)=\max _{u \in V(G)} \operatorname{ecc}(u)=\max _{u, v \in V(G)} d(u, v)
$$

Finally, the radius, $\operatorname{rad}(G)$ is defined to be

$$
\operatorname{rad}(G)=\min _{u \in V(G)} \operatorname{ecc}(u)
$$

It could be that the radius and diameter of a graph are the same.

The diameter of $G, \operatorname{diam}(G)$, is defined as

$$
\operatorname{diam}(G)=\max _{u \in V(G)} \operatorname{ecc}(u)=\max _{u, v \in V(G)} d(u, v) .
$$

Finally, the $\operatorname{radius}, \operatorname{rad}(G)$ is defined to be

$$
\operatorname{rad}(G)=\min _{u \in V(G)} \operatorname{ecc}(u) .
$$

It could be that the radius and diameter of a graph are the same.

The center of a graph G is the induced subgraph of G whose vertex set is the set of all vertices of eccentricity $\operatorname{rad}(G)$.

The center could be the whole graph.

Theorem 2.3 (Jordan, 1869): The center of any tree is either a vertex or two adjacent vertices.

Theorem 2.3 (Jordan, 1869): The center of any tree is either a vertex or two adjacent vertices.

Proof. Base: $n \leq 2$.
Induction step. Suppose the theorem holds for all trees with less than n vertices. Take any tree T with n vertices.

Let L be the set of leaves in T and $T^{\prime}=T-L$.

Theorem 2.3 (Jordan, 1869): The center of any tree is either a vertex or two adjacent vertices.

Proof. Base: $n \leq 2$.
Induction step. Suppose the theorem holds for all trees with less than n vertices. Take any tree T with n vertices.

Let L be the set of leaves in T and $T^{\prime}=T-L$.
By Lemma 2.1 (b), T^{\prime} is a tree. We claim that

$$
\begin{equation*}
\text { for each } u \in V\left(T^{\prime}\right), \epsilon_{T^{\prime}}(u)=\epsilon_{T}(u)-1 . \tag{1}
\end{equation*}
$$

Indeed, each longest path in T starting from u ends at a leaf (which is not in T^{\prime}). This shows inequality \leq.
On the other hand, if $u v_{1} v_{2} \ldots v_{k-1} v_{k}$ is a longest path in T starting from u, then all vertices $u, v_{1}, v_{2} \ldots, v_{k-1}$ are in T^{\prime}. Hence we also have \geq.

By (1), the center of T^{\prime} is the same as in T.
This proves Theorem 2.3.

