Trees and distance

Lecture 9

Characterization of trees

Theorem 2.2 (A characterization of trees): Let $n \ge 1$. For an *n*-vertex graph *G*, the following are equivalent (A) *G* is connected and has no cycles.

- (B) *G* is connected and has n 1 edges.
- (C) G has no cycles and has n 1 edges.

(D) For any $u, v \in V(G)$, G has exactly one u, v-path.

(F) Adding to *G* any edge creates a graph with exactly one cycle.

(ロ) (同) (三) (三) (三) (○) (○)

Distances in graphs

Let *G* be a graph and let $u, v \in V(G)$.

If *u* and *v* are in the same component of *G*, then the **distance** from *u* to *v* is the length of the shortest *u*, *v*-path in *G*, and we write $d_G(u, v)$ for this (or often just d(u, v)). If *u* and *v* are in different components, then we define $d_G(u, v) = \infty$.

(日) (日) (日) (日) (日) (日) (日)

Distances in graphs

Let *G* be a graph and let $u, v \in V(G)$.

If *u* and *v* are in the same component of *G*, then the **distance** from *u* to *v* is the length of the shortest *u*, *v*-path in *G*, and we write $d_G(u, v)$ for this (or often just d(u, v)). If *u* and *v* are in different components, then we define $d_G(u, v) = \infty$.

Note that distance in undirected graphs satisfies the axioms of a metrics: it is symmetric, satisfies triangle inequality, and d(u, u) = 0.

・ロト・日本・日本・日本・日本

Distances in graphs

Let *G* be a graph and let $u, v \in V(G)$.

If *u* and *v* are in the same component of *G*, then the **distance** from *u* to *v* is the length of the shortest *u*, *v*-path in *G*, and we write $d_G(u, v)$ for this (or often just d(u, v)). If *u* and *v* are in different components, then we define $d_G(u, v) = \infty$.

Note that distance in undirected graphs satisfies the axioms of a metrics: it is symmetric, satisfies triangle inequality, and d(u, u) = 0.

The **eccentricity** of *u* in *G*, denoted ecc(u) or $\epsilon(u)$ is the maximum distance from *u* to another vertex in *G*, or

 $\operatorname{ecc}(u) = \max_{v \in V(G)} d(u, v).$

・ロト・日本・日本・日本・日本

The **diameter** of G, diam(G), is defined as

$$\operatorname{diam}(G) = \max_{u \in V(G)} \operatorname{ecc}(u) = \max_{u, v \in V(G)} d(u, v).$$

The **diameter** of G, diam(G), is defined as

$$\operatorname{diam}(G) = \max_{u \in V(G)} \operatorname{ecc}(u) = \max_{u, v \in V(G)} d(u, v).$$

Finally, the radius, rad(G) is defined to be

$$\operatorname{rad}(G) = \min_{u \in V(G)} \operatorname{ecc}(u).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

It could be that the radius and diameter of a graph are the same.

The **diameter** of G, diam(G), is defined as

$$\operatorname{diam}(G) = \max_{u \in V(G)} \operatorname{ecc}(u) = \max_{u, v \in V(G)} d(u, v).$$

Finally, the radius, rad(G) is defined to be

 $\operatorname{rad}(G) = \min_{u \in V(G)} \operatorname{ecc}(u).$

It could be that the radius and diameter of a graph are the same.

The **center** of a graph *G* is the induced subgraph of *G* whose vertex set is the set of all vertices of eccentricity rad(G).

The center could be the whole graph.

Theorem 2.3 (Jordan, 1869): The center of any tree is either a vertex or two adjacent vertices.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Theorem 2.3 (Jordan, 1869): The center of any tree is either a vertex or two adjacent vertices.

Proof. **Base:** $n \le 2$.

Induction step. Suppose the theorem holds for all trees with less than n vertices. Take any tree T with n vertices.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Let *L* be the set of leaves in *T* and T' = T - L.

Theorem 2.3 (Jordan, 1869): The center of any tree is either a vertex or two adjacent vertices.

Proof. Base: $n \le 2$.

Induction step. Suppose the theorem holds for all trees with less than n vertices. Take any tree T with n vertices.

Let *L* be the set of leaves in *T* and T' = T - L.

By Lemma 2.1 (b), T' is a tree. We claim that

for each
$$u \in V(T')$$
, $\epsilon_{T'}(u) = \epsilon_T(u) - 1$. (1)

Indeed, each longest path in *T* starting from *u* ends at a leaf (which is not in *T'*). This shows inequality \leq . On the other hand, if $uv_1v_2 \dots v_{k-1}v_k$ is a longest path in *T* starting from *u*, then all vertices $u, v_1, v_2 \dots, v_{k-1}$ are in *T'*. Hence we also have \geq . By (1), the center of T' is the same as in T.

This proves Theorem 2.3.

Coding of labeled trees

Among ways to code a graph are adjacency and incidency matrices. For labeled trees, there are nicer and shorter ways to code.

Consider the following procedure for a tree *T* with vertex set $\{1, \ldots, n\}$:

(ロ) (同) (三) (三) (三) (○) (○)

Prüfer algorithm. Let $T_0 = T$. For i = 1, ..., n-1, (a) let b_i be the smallest leaf in T_{i-1} , (b) denote by a_i the neighbor of b_i in T_{i-1} , and (c) let $T_i = T_{i-1} - b_i$.

Coding of labeled trees

Among ways to code a graph are adjacency and incidency matrices. For labeled trees, there are nicer and shorter ways to code.

Consider the following procedure for a tree T with vertex set $\{1, \ldots, n\}$:

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Prüfer algorithm. Let $T_0 = T$. For i = 1, ..., n-1, (a) let b_i be the smallest leaf in T_{i-1} , (b) denote by a_i the neighbor of b_i in T_{i-1} , and (c) let $T_i = T_{i-1} - b_i$.

The Prüfer code of *T* is the vector (a_1, \ldots, a_{n-2}) .

(P1) $a_{n-1} = n$.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

(P1) $a_{n-1} = n$.

(P2) Any vertex of degree *s* in *T* appears in (a_1, \ldots, a_{n-2}) exactly *s* – 1 times.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(P1) $a_{n-1} = n$.

(P2) Any vertex of degree *s* in *T* appears in (a_1, \ldots, a_{n-2}) exactly *s* – 1 times.

(P3) $b_i = \min \{k : k \notin \{b_1, \dots, b_{i-1}\} \cup \{a_i, a_{i+1}, \dots, a_{n-2}\}\}$ for each *i*.

(P1) $a_{n-1} = n$.

(P2) Any vertex of degree *s* in *T* appears in (a_1, \ldots, a_{n-2}) exactly *s* – 1 times.

(P3) $b_i = \min \{k : k \notin \{b_1, \dots, b_{i-1}\} \cup \{a_i, a_{i+1}, \dots, a_{n-2}\}\}$ for each *i*.

Proofs. (P1) follows from the fact that we always have a leaf distinct from *n*.

(P2) follows from the facts that at the moment some *k* appears in (a_1, \ldots, a_{n-2}) , its degree decreases by 1 and for $s \ge 3$ the neighbors of leaves in *s*-vertex trees are not leaves.

(P3) follows from the algorithm and (P2).

Proof. Uniqueness. By (P1) we know $a_{n-1} = n$. Then by (P3), we can reconstruct b_i for all $1 \le i \le n - 1$. Thus the edges are $a_1b_1, \ldots, a_{n-1}b_{n-1}$.

(ロ) (同) (三) (三) (三) (○) (○)

Proof. Uniqueness. By (P1) we know $a_{n-1} = n$. Then by (P3), we can reconstruct b_i for all $1 \le i \le n - 1$. Thus the edges are $a_1b_1, \ldots, a_{n-1}b_{n-1}$.

Existence. Given (a_1, \ldots, a_{n-2}) , we let $a_{n-1} = n$ and define numbers b_i by (P3). Now consider the edges going from $a_{n-1}b_{n-1}$ backwards and check that for each *i*, b_i is a leaf in the graph formed by the edges $a_ib_i, \ldots, a_{n-1}b_{n-1}$.

(ロ) (同) (三) (三) (三) (○) (○)

Proof. Uniqueness. By (P1) we know $a_{n-1} = n$. Then by (P3), we can reconstruct b_i for all $1 \le i \le n - 1$. Thus the edges are $a_1b_1, \ldots, a_{n-1}b_{n-1}$.

Existence. Given (a_1, \ldots, a_{n-2}) , we let $a_{n-1} = n$ and define numbers b_i by (P3). Now consider the edges going from $a_{n-1}b_{n-1}$ backwards and check that for each *i*, b_i is a leaf in the graph formed by the edges $a_ib_i, \ldots, a_{n-1}b_{n-1}$.

Corollary 2.5 (Cayley's Formula, Borchardt 1860): There are n^{n-2} labeled *n*-vertex trees.