
Trees and distance

Lecture 9



Characterization of trees
Theorem 2.2 (A characterization of trees): Let n ≥ 1. For an
n-vertex graph G, the following are equivalent
(A) G is connected and has no cycles.

(B) G is connected and has n − 1 edges.

(C) G has no cycles and has n − 1 edges.

(D) For any u, v ∈ V (G), G has exactly one u, v -path.

(F) Adding to G any edge creates a graph with exactly one
cycle.



Distances in graphs
Let G be a graph and let u, v ∈ V (G).
If u and v are in the same component of G, then the distance
from u to v is the length of the shortest u, v -path in G, and we
write dG(u, v) for this (or often just d(u, v)). If u and v are in
different components, then we define dG(u, v) = ∞.

Note that distance in undirected graphs satisfies the axioms of
a metrics: it is symmetric, satisfies triangle inequality, and
d(u,u) = 0.

The eccentricity of u in G, denoted ecc(u) or ϵ(u) is the
maximum distance from u to another vertex in G, or

ecc(u) = max
v∈V (G)

d(u, v).
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The diameter of G, diam(G), is defined as

diam(G) = max
u∈V (G)

ecc(u) = max
u,v∈V (G)

d(u, v).

Finally, the radius, rad(G) is defined to be

rad(G) = min
u∈V (G)

ecc(u).

It could be that the radius and diameter of a graph are the
same.

The center of a graph G is the induced subgraph of G whose
vertex set is the set of all vertices of eccentricity rad(G).

The center could be the whole graph.
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Theorem 2.3 (Jordan, 1869): The center of any tree is either a
vertex or two adjacent vertices.

Proof. Base: n ≤ 2.
Induction step. Suppose the theorem holds for all trees with
less than n vertices. Take any tree T with n vertices.

Let L be the set of leaves in T and T ′ = T − L.

By Lemma 2.1 (b), T ′ is a tree. We claim that

for each u ∈ V (T ′), ϵT ′(u) = ϵT (u)− 1. (1)

Indeed, each longest path in T starting from u ends at a leaf
(which is not in T ′). This shows inequality ≤.
On the other hand, if uv1v2 . . . vk−1vk is a longest path in T
starting from u, then all vertices u, v1, v2 . . . , vk−1 are in T ′.
Hence we also have ≥.
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By (1), the center of T ′ is the same as in T .

This proves Theorem 2.3.



Coding of labeled trees
Among ways to code a graph are adjacency and incidency
matrices. For labeled trees, there are nicer and shorter ways to
code.

Consider the following procedure for a tree T with vertex set
{1, . . . ,n}:

Prüfer algorithm. Let T0 = T . For i = 1, . . . ,n − 1,
(a) let bi be the smallest leaf in Ti−1,
(b) denote by ai the neighbor of bi in Ti−1, and
(c) let Ti = Ti−1 − bi .

The Prüfer code of T is the vector (a1, . . . ,an−2).
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Properties of Prüfer algorithm
(P1) an−1 = n.

(P2) Any vertex of degree s in T appears in (a1, . . . ,an−2)
exactly s − 1 times.

(P3) bi = min {k : k /∈ {b1, . . . ,bi−1} ∪ {ai ,ai+1, . . . ,an−2}} for
each i .

Proofs. (P1) follows from the fact that we always have a leaf
distinct from n.

(P2) follows from the facts that at the moment some k appears
in (a1, . . . ,an−2), its degree decreases by 1 and for s ≥ 3 the
neighbors of leaves in s-vertex trees are not leaves.

(P3) follows from the algorithm and (P2).



Properties of Prüfer algorithm
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Theorem 2.4 (Prüfer, 1918): Every vector (a1, . . . ,an−2) with
ai ∈ {1, . . . ,n} for each i is the Prüfer code of exactly one
labeled n-vertex tree.

Proof. Uniqueness. By (P1) we know an−1 = n. Then by (P3),
we can reconstruct bi for all 1 ≤ i ≤ n − 1. Thus the edges are
a1b1, . . . ,an−1bn−1.

Existence. Given (a1, . . . ,an−2), we let an−1 = n and define
numbers bi by (P3). Now consider the edges going from
an−1bn−1 backwards and check that for each i , bi is a leaf in the
graph formed by the edges aibi , . . . ,an−1bn−1.

Corollary 2.5 (Cayley’s Formula, Borchardt 1860): There are
nn−2 labeled n-vertex trees.
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