Trees and distance

Lecture 9

Characterization of trees

Theorem 2.2 (A characterization of trees): Let $n \geq 1$. For an n-vertex graph G, the following are equivalent (A) G is connected and has no cycles.
(B) G is connected and has $n-1$ edges.
(C) G has no cycles and has $n-1$ edges.
(D) For any $u, v \in V(G), G$ has exactly one u, v-path.
(F) Adding to G any edge creates a graph with exactly one cycle.

Distances in graphs

Let G be a graph and let $u, v \in V(G)$.
If u and v are in the same component of G, then the distance from u to v is the length of the shortest u, v-path in G, and we write $d_{G}(u, v)$ for this (or often just $d(u, v)$). If u and v are in different components, then we define $d_{G}(u, v)=\infty$.

Distances in graphs

Let G be a graph and let $u, v \in V(G)$.
If u and v are in the same component of G, then the distance from u to v is the length of the shortest u, v-path in G, and we write $d_{G}(u, v)$ for this (or often just $d(u, v)$). If u and v are in different components, then we define $d_{G}(u, v)=\infty$.

Note that distance in undirected graphs satisfies the axioms of a metrics: it is symmetric, satisfies triangle inequality, and $d(u, u)=0$.

Distances in graphs

Let G be a graph and let $u, v \in V(G)$.
If u and v are in the same component of G, then the distance from u to v is the length of the shortest u, v-path in G, and we write $d_{G}(u, v)$ for this (or often just $d(u, v)$). If u and v are in different components, then we define $d_{G}(u, v)=\infty$.

Note that distance in undirected graphs satisfies the axioms of a metrics: it is symmetric, satisfies triangle inequality, and $d(u, u)=0$.

The eccentricity of u in G, denoted $\operatorname{ecc}(u)$ or $\epsilon(u)$ is the maximum distance from u to another vertex in G, or

$$
\operatorname{ecc}(u)=\max _{v \in V(G)} d(u, v)
$$

The diameter of $G, \operatorname{diam}(G)$, is defined as

$$
\operatorname{diam}(G)=\max _{u \in V(G)} \operatorname{ecc}(u)=\max _{u, v \in V(G)} d(u, v)
$$

The diameter of $G, \operatorname{diam}(G)$, is defined as

$$
\operatorname{diam}(G)=\max _{u \in V(G)} \operatorname{ecc}(u)=\max _{u, v \in V(G)} d(u, v)
$$

Finally, the radius, $\operatorname{rad}(G)$ is defined to be

$$
\operatorname{rad}(G)=\min _{u \in V(G)} \operatorname{ecc}(u)
$$

It could be that the radius and diameter of a graph are the same.

The diameter of $G, \operatorname{diam}(G)$, is defined as

$$
\operatorname{diam}(G)=\max _{u \in V(G)} \operatorname{ecc}(u)=\max _{u, v \in V(G)} d(u, v) .
$$

Finally, the $\operatorname{radius}, \operatorname{rad}(G)$ is defined to be

$$
\operatorname{rad}(G)=\min _{u \in V(G)} \operatorname{ecc}(u) .
$$

It could be that the radius and diameter of a graph are the same.

The center of a graph G is the induced subgraph of G whose vertex set is the set of all vertices of eccentricity $\operatorname{rad}(G)$.

The center could be the whole graph.

Theorem 2.3 (Jordan, 1869): The center of any tree is either a vertex or two adjacent vertices.

Theorem 2.3 (Jordan, 1869): The center of any tree is either a vertex or two adjacent vertices.

Proof. Base: $n \leq 2$.
Induction step. Suppose the theorem holds for all trees with less than n vertices. Take any tree T with n vertices.

Let L be the set of leaves in T and $T^{\prime}=T-L$.

Theorem 2.3 (Jordan, 1869): The center of any tree is either a vertex or two adjacent vertices.

Proof. Base: $n \leq 2$.
Induction step. Suppose the theorem holds for all trees with less than n vertices. Take any tree T with n vertices.

Let L be the set of leaves in T and $T^{\prime}=T-L$.
By Lemma 2.1 (b), T^{\prime} is a tree. We claim that

$$
\begin{equation*}
\text { for each } u \in V\left(T^{\prime}\right), \epsilon_{T^{\prime}}(u)=\epsilon_{T}(u)-1 . \tag{1}
\end{equation*}
$$

Indeed, each longest path in T starting from u ends at a leaf (which is not in T^{\prime}). This shows inequality \leq.
On the other hand, if $u v_{1} v_{2} \ldots v_{k-1} v_{k}$ is a longest path in T starting from u, then all vertices $u, v_{1}, v_{2} \ldots, v_{k-1}$ are in T^{\prime}. Hence we also have \geq.

By (1), the center of T^{\prime} is the same as in T.
This proves Theorem 2.3.

Coding of labeled trees

Among ways to code a graph are adjacency and incidency matrices. For labeled trees, there are nicer and shorter ways to code.

Consider the following procedure for a tree T with vertex set $\{1, \ldots, n\}$:

Prüfer algorithm. Let $T_{0}=T$. For $i=1, \ldots, n-1$,
(a) let b_{i} be the smallest leaf in T_{i-1},
(b) denote by a_{i} the neighbor of b_{i} in T_{i-1}, and
(c) let $T_{i}=T_{i-1}-b_{i}$.

Coding of labeled trees

Among ways to code a graph are adjacency and incidency matrices. For labeled trees, there are nicer and shorter ways to code.

Consider the following procedure for a tree T with vertex set $\{1, \ldots, n\}$:

Prüfer algorithm. Let $T_{0}=T$. For $i=1, \ldots, n-1$,
(a) let b_{i} be the smallest leaf in T_{i-1},
(b) denote by a_{i} the neighbor of b_{i} in T_{i-1}, and
(c) let $T_{i}=T_{i-1}-b_{i}$.

The Prüfer code of T is the vector $\left(a_{1}, \ldots, a_{n-2}\right)$.

Properties of Prüfer algorithm

(P1) $a_{n-1}=n$.

Properties of Prüfer algorithm

(P1) $a_{n-1}=n$.
(P2) Any vertex of degree s in T appears in $\left(a_{1}, \ldots, a_{n-2}\right)$ exactly s-1 times.

Properties of Prüfer algorithm

(P1) $a_{n-1}=n$.
(P2) Any vertex of degree s in T appears in $\left(a_{1}, \ldots, a_{n-2}\right)$ exactly s-1 times.
$(\mathrm{P} 3) b_{i}=\min \left\{k: k \notin\left\{b_{1}, \ldots, b_{i-1}\right\} \cup\left\{a_{i}, a_{i+1}, \ldots, a_{n-2}\right\}\right\}$ for each i.

Properties of Prüfer algorithm

(P1) $a_{n-1}=n$.
(P2) Any vertex of degree s in T appears in $\left(a_{1}, \ldots, a_{n-2}\right)$ exactly s-1 times.
$(\mathrm{P} 3) b_{i}=\min \left\{k: k \notin\left\{b_{1}, \ldots, b_{i-1}\right\} \cup\left\{a_{i}, a_{i+1}, \ldots, a_{n-2}\right\}\right\}$ for each i.

Proofs. (P1) follows from the fact that we always have a leaf distinct from n.
(P2) follows from the facts that at the moment some k appears in $\left(a_{1}, \ldots, a_{n-2}\right)$, its degree decreases by 1 and for $s \geq 3$ the neighbors of leaves in s-vertex trees are not leaves.
(P3) follows from the algorithm and (P2).

Theorem 2.4 (Prüfer, 1918): Every vector $\left(a_{1}, \ldots, a_{n-2}\right)$ with $a_{i} \in\{1, \ldots, n\}$ for each i is the Prüfer code of exactly one labeled n-vertex tree.

Theorem 2.4 (Prüfer, 1918): Every vector $\left(a_{1}, \ldots, a_{n-2}\right)$ with $a_{i} \in\{1, \ldots, n\}$ for each i is the Prüfer code of exactly one labeled n-vertex tree.

Proof. Uniqueness. By (P1) we know $a_{n-1}=n$. Then by (P3), we can reconstruct b_{i} for all $1 \leq i \leq n-1$. Thus the edges are $a_{1} b_{1}, \ldots, a_{n-1} b_{n-1}$.

Theorem 2.4 (Prüfer, 1918): Every vector $\left(a_{1}, \ldots, a_{n-2}\right)$ with $a_{i} \in\{1, \ldots, n\}$ for each i is the Prüfer code of exactly one labeled n-vertex tree.

Proof. Uniqueness. By (P1) we know $a_{n-1}=n$. Then by (P3), we can reconstruct b_{i} for all $1 \leq i \leq n-1$. Thus the edges are $a_{1} b_{1}, \ldots, a_{n-1} b_{n-1}$.

Existence. Given $\left(a_{1}, \ldots, a_{n-2}\right)$, we let $a_{n-1}=n$ and define numbers b_{i} by (P3). Now consider the edges going from $a_{n-1} b_{n-1}$ backwards and check that for each i, b_{i} is a leaf in the graph formed by the edges $a_{i} b_{i}, \ldots, a_{n-1} b_{n-1}$.

Theorem 2.4 (Prüfer, 1918): Every vector $\left(a_{1}, \ldots, a_{n-2}\right)$ with $a_{i} \in\{1, \ldots, n\}$ for each i is the Prüfer code of exactly one labeled n-vertex tree.

Proof. Uniqueness. By (P1) we know $a_{n-1}=n$. Then by (P3), we can reconstruct b_{i} for all $1 \leq i \leq n-1$. Thus the edges are $a_{1} b_{1}, \ldots, a_{n-1} b_{n-1}$.

Existence. Given $\left(a_{1}, \ldots, a_{n-2}\right)$, we let $a_{n-1}=n$ and define numbers b_{i} by (P3). Now consider the edges going from $a_{n-1} b_{n-1}$ backwards and check that for each i, b_{i} is a leaf in the graph formed by the edges $a_{i} b_{i}, \ldots, a_{n-1} b_{n-1}$.

Corollary 2.5 (Cayley’s Formula, Borchardt 1860): There are n^{n-2} labeled n-vertex trees.

