Please, write here your name:

Problem 1	Problem 2	Problem 3	Problem 4	Problem 5	Problem 6

February 27, 2020

MATH412 Exam 1

1. Which of the following are graphic sequences? Provide a construction or a proof of impossibility for each:
(a) $(4,4,3,3,3,2,2,2,1,1)$,
(b) $(5,5,5,4,2,1,1,1)$,
(c) $(5,5,5,3,2,2,1,1)$.
2. Let G be a graph with at least two vertices. Prove or disprove:
(a) Deleting a vertex of degree $\Delta(G)$ cannot increase the average degree.
(b) Deleting a vertex of degree $\delta(G)$ cannot decrease the average degree.
3. Using the Prüfer correspondence, for $n \geq 8$, count the number of trees with vertex set $[n]$ that have maximum degree exactly 4 and exactly 5 leaves. (Hint: Start from determining which vertex degrees should be in a tree with 5 leaves and a vertex of degree 4.)
4. Determine which graphs below are isomorphic and which are not. (Hint: it is simpler to consider the complements of the graphs.)

(a)

(b)

(c)
5. Prove the following part of the characterization theorem for trees. Prove that an n-vertex graph G is a tree if and only if G is connected and has $n-1$ edges. You can use Lemma 2.1 which claims that each tree has a leaf and that if we delete a leaf from a connected graph then the resulting graph is connected.
6. (a) State the Matrix Tree Theorem (with all details);
(b) Define and draw Petersen's graph;
(c) May a disconnected graph have minimum degree 3? Please, either explain why not or give an example of such a graph.
