Flows: algorightms and applications

Lecture 29

Theorem 4.13: $\kappa'_G(x, y) = \lambda'_G(x, y) \ \forall x, y \in V(G) \ \forall \text{ digraph } G.$ Theorem 4.12: $\kappa_G(x, y) = \lambda_G(x, y) \ \forall x, y \in V(G) \text{ with}$ $xy \notin E(G) \ \forall \text{ digraph } G.$

Proof. Let *G* a digraph. Construct another digraph G' as follows

Replace each vertex u by two vertices u' and u'' with an edge u'u'', and replace each edge vw with edge v''w'.

By Theorem 4.13, $\kappa'_{G'}(x'', y') = \lambda'_{G'}(x'', y').$ (*)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

By Theorem 4.13, $\kappa'_{G'}(x'', y') = \lambda'_{G'}(x'', y').$ (*)

Let *S* be a minimum *x*, *y*-cut in *G*. If we delete in *G*' edge *w*'*w*'' for every $w \in S$, then the resulting subgraph of *G*' has no x'', y'-path. Hence

 $\kappa_G(\mathbf{X}, \mathbf{y}) \ge \kappa'_{G'}(\mathbf{X}'', \mathbf{y}'). \tag{1}$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

By Theorem 4.13, $\kappa'_{G'}(x'', y') = \lambda'_{G'}(x'', y').$ (*)

Let *S* be a minimum *x*, *y*-cut in *G*. If we delete in *G*' edge *w*'*w*'' for every $w \in S$, then the resulting subgraph of *G*' has no x'', y'-path. Hence

$$\kappa_G(\mathbf{x}, \mathbf{y}) \ge \kappa'_{G'}(\mathbf{x}'', \mathbf{y}'). \tag{1}$$

On the other hand, let *L* be a minimum x'', y'-edge-cut in *G'*. If *L* contains an edge of the form v''w' and $w' \neq y'$, then we can replace it in *L* by edge w'w''. Similarly, if $v'' \neq x''$, then we can find a minimum x'', y'-edge-cut *L* in *G'* in which each edge has the form u'u''. But then the set $\{u \in V(G) : u'u'' \in L\}$ is an *x*, *y*-cut in *G*. So, $\kappa_G(x, y) \leq \kappa'_{G'}(x'', y')$, and together with (1),

$$\kappa_G(\mathbf{X}, \mathbf{y}) = \kappa'_{G'}(\mathbf{X}'', \mathbf{y}'). \tag{2}$$

(ロ) (同) (三) (三) (三) (○) (○)

Any two edge-disjoint x'', y'-paths in G' are also vertex int.-disjoint, and hence correspond to int.-disjoint x, y-paths in G. Hence $\lambda_G(x, y) \ge \lambda'_{G'}(x'', y')$, which together with the previous para yields

$$\lambda_G(\mathbf{x}, \mathbf{y}) = \lambda'_{G'}(\mathbf{x}'', \mathbf{y}'). \tag{3}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Any two edge-disjoint x'', y'-paths in G' are also vertex int.-disjoint, and hence correspond to int.-disjoint x, y-paths in G. Hence $\lambda_G(x, y) \ge \lambda'_{G'}(x'', y')$, which together with the previous para yields

$$\lambda_G(\mathbf{x}, \mathbf{y}) = \lambda'_{G'}(\mathbf{x}'', \mathbf{y}'). \tag{3}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Now (*), (2), and (3) together imply the theorem.

Any two edge-disjoint x'', y'-paths in G' are also vertex int.-disjoint, and hence correspond to int.-disjoint x, y-paths in G. Hence $\lambda_G(x, y) \ge \lambda'_{G'}(x'', y')$, which together with the previous para yields

$$\lambda_{G}(\mathbf{x}, \mathbf{y}) = \lambda'_{G'}(\mathbf{x}'', \mathbf{y}'). \tag{3}$$

Now (*), (2), and (3) together imply the theorem.

Remark: Since we can find maximum flows in *n*-vertex networks in $O(n^3)$ iterations, the last proofs yield polynomial algorithms for finding connectivity, edge connectivity and minimum separating sets in directed graphs.

Matchings in bipartite graphs: using flows

Let *G* be a bipartite graph with parts *X* and *Y*. Construct an auxiliary network $H = (V, E, s, t, {c(e)}_{e \in E})$ as follows.

We take $V = V(G) \cup \{s, t\}$, orient each edge of *G* from *X* to *Y* and make the capacity of each such edge equal n = |X| + |Y|, add the set of edges $\{sx : x \in X\} \cup \{yt : y \in Y\}$, each of capacity 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof. Let $L = \{x_iy_i : 1 \le i \le k\}$ be a matching in *G* with $|L| = k = \alpha'(G)$. For i = 1, ..., k, let P_i denote the path s, x_i, y_i, t in *H*. Then the value of the flow

$$\sum_{i=1}^k \phi(P_i,1)$$

is $k = \alpha'(G)$. This proves $\alpha'(G) \le M(H)$.

Proof. Let $L = \{x_iy_i : 1 \le i \le k\}$ be a matching in *G* with $|L| = k = \alpha'(G)$. For i = 1, ..., k, let P_i denote the path s, x_i, y_i, t in *H*. Then the value of the flow

$$\sum_{i=1}^k \phi(P_i, 1)$$

is $k = \alpha'(G)$. This proves $\alpha'(G) \le M(H)$.

Now consider a flow *f* in *H* with M(f) = M(H) obtained using FF-algorithm. By Theorem 4.16, $f = \sum_{i=1}^{k} \phi(P_i, \rho_i)$, where each ρ_i is a positive integer. Since each of these paths contains two edges of capacity 1, $\rho_1 = \ldots = \rho_k = 1$.

Proof. Let $L = \{x_iy_i : 1 \le i \le k\}$ be a matching in *G* with $|L| = k = \alpha'(G)$. For i = 1, ..., k, let P_i denote the path s, x_i, y_i, t in *H*. Then the value of the flow

$$\sum_{i=1}^k \phi(P_i, 1)$$

is $k = \alpha'(G)$. This proves $\alpha'(G) \le M(H)$.

Now consider a flow *f* in *H* with M(f) = M(H) obtained using FF-algorithm. By Theorem 4.16, $f = \sum_{i=1}^{k} \phi(P_i, \rho_i)$, where each ρ_i is a positive integer. Since each of these paths contains two edges of capacity 1, $\rho_1 = \ldots = \rho_k = 1$.

Moreover, since each $x \in X$ has only one in-neighbor, and each $y \in Y$ has only one out-neighbor, each of the paths P_i has the form s, x_i, y_i, t and all edges $x_i y_i$ are disjoint. This proves $\alpha'(G) \ge M(H)$ and hence the theorem.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Main results in Chapter 4

1. Characterization theorem for 2-connected graphs. (Theorem 4.6) (Theorem 4.2.4 in the book).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2. Max-flow Min-cut Theorem (Theorem 4.18).

Main results in Chapter 4

- 1. Characterization theorem for 2-connected graphs. (Theorem 4.6) (Theorem 4.2.4 in the book).
- 2. Max-flow Min-cut Theorem (Theorem 4.18).
- 3. Menger Theorems (Theorems 4.8, 4.10, 4.11, 4.12 and 4.13)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A polygonal curve is a curve composed of finitely many line segments.

A drawing of a graph *G* is a function $\varphi : V(G) \cup E(G) \rightarrow \mathbb{R}^2$ s.t. (a) $\varphi(v) \in \mathbb{R}^2$ for every $v \in V(G)$; (b) $\varphi(v) \neq \varphi(v')$ if $v, v' \in V(G)$ and $v \neq v'$; (c) $\varphi(xy)$ is a polygonal curve connecting $\varphi(x)$ with $\varphi(y)$.

A crossing in a drawing of a graph is a common point in the images of two edges that is not the image of their common end.

A graph *G* is planar if it has a drawing φ without crossings.

A graph *G* is planar if it has a drawing φ without crossings. A plane graph is a pair (G, φ) where φ is a drawing of *G* without crossings.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A graph *G* is planar if it has a drawing φ without crossings. A plane graph is a pair (G, φ) where φ is a drawing of *G* without crossings.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remind me about Gas-Water-Electricity Problem.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The length, $\ell(F_i)$, of a face F_i in a plane graph (G, φ) is the total length of the closed walk(s) bounding F_i .

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The length, $\ell(F_i)$, of a face F_i in a plane graph (G, φ) is the total length of the closed walk(s) bounding F_i .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The length, $\ell(F_i)$, of a face F_i in a plane graph (G, φ) is the total length of the closed walk(s) bounding F_i .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition of dual graphs: given in class (and book).