Flows: algorightms and applications

Lecture 29

Theorem 4.13: $\kappa_{G}^{\prime}(x, y)=\lambda_{G}^{\prime}(x, y) \forall x, y \in V(G) \forall$ digraph G.
Theorem 4.12: $\kappa_{G}(x, y)=\lambda_{G}(x, y) \forall x, y \in V(G)$ with $x y \notin E(G) \forall$ digraph G.

Proof. Let G a digraph. Construct another digraph G^{\prime} as follows

Replace each vertex u by two vertices u^{\prime} and $u^{\prime \prime}$ with an edge $u^{\prime} u^{\prime \prime}$, and replace each edge $v w$ with edge $v^{\prime \prime} w^{\prime}$.

By Theorem 4.13, $\quad \kappa_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)=\lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)$.

By Theorem 4.13, $\quad \kappa_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)=\lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)$.
Let S be a minimum x, y-cut in G. If we delete in G^{\prime} edge $w^{\prime} w^{\prime \prime}$ for every $w \in S$, then the resulting subgraph of G^{\prime} has no $x^{\prime \prime}, y^{\prime}$-path. Hence

$$
\begin{equation*}
\kappa_{G}(x, y) \geq \kappa_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right) \tag{1}
\end{equation*}
$$

By Theorem 4.13, $\quad \kappa_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)=\lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)$.
Let S be a minimum x, y-cut in G. If we delete in G^{\prime} edge $w^{\prime} w^{\prime \prime}$ for every $w \in S$, then the resulting subgraph of G^{\prime} has no $x^{\prime \prime}, y^{\prime}$-path. Hence

$$
\begin{equation*}
\kappa_{G}(x, y) \geq \kappa_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right) \tag{1}
\end{equation*}
$$

On the other hand, let L be a minimum $x^{\prime \prime}, y^{\prime}$-edge-cut in G^{\prime}. If L contains an edge of the form $v^{\prime \prime} w^{\prime}$ and $w^{\prime} \neq y^{\prime}$, then we can replace it in L by edge $w^{\prime} w^{\prime \prime}$. Similarly, if $v^{\prime \prime} \neq x^{\prime \prime}$, then we can replace $v^{\prime \prime} w^{\prime}$ in L by edge $v^{\prime} v^{\prime \prime}$. Since $x^{\prime \prime} y^{\prime} \notin E\left(G^{\prime}\right)$, we can find a minimum $x^{\prime \prime}, y^{\prime}$-edge-cut L in G^{\prime} in which each edge has the form $u^{\prime} u^{\prime \prime}$. But then the set $\left\{u \in V(G): u^{\prime} u^{\prime \prime} \in L\right\}$ is an x, y-cut in G. So, $\kappa_{G}(x, y) \leq \kappa_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)$, and together with (1),

$$
\begin{equation*}
\kappa_{G}(x, y)=\kappa_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right) . \tag{2}
\end{equation*}
$$

Any two int.-disjoint x, y-paths in G yield edge-disjoint $x^{\prime \prime}, y^{\prime}$-paths in G^{\prime} (with added edges of the kind $\left.u^{\prime} u^{\prime \prime}\right)$. Hence $\lambda_{G}(x, y) \leq \lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)$.

Any two int.-disjoint x, y-paths in G yield edge-disjoint $x^{\prime \prime}, y^{\prime}$-paths in G^{\prime} (with added edges of the kind $\left.u^{\prime} u^{\prime \prime}\right)$. Hence $\lambda_{G}(x, y) \leq \lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)$.

Any two edge-disjoint $x^{\prime \prime}, y^{\prime}$-paths in G^{\prime} are also vertex int.-disjoint, and hence correspond to int.-disjoint x, y-paths in G. Hence $\lambda_{G}(x, y) \geq \lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)$, which together with the previous para yields

$$
\begin{equation*}
\lambda_{G}(x, y)=\lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right) . \tag{3}
\end{equation*}
$$

Any two int.-disjoint x, y-paths in G yield edge-disjoint $x^{\prime \prime}, y^{\prime}$-paths in G^{\prime} (with added edges of the kind $\left.u^{\prime} u^{\prime \prime}\right)$. Hence $\lambda_{G}(x, y) \leq \lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)$.

Any two edge-disjoint $x^{\prime \prime}, y^{\prime}$-paths in G^{\prime} are also vertex int.-disjoint, and hence correspond to int.-disjoint x, y-paths in G. Hence $\lambda_{G}(x, y) \geq \lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)$, which together with the previous para yields

$$
\begin{equation*}
\lambda_{G}(x, y)=\lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right) . \tag{3}
\end{equation*}
$$

Now $(*),(2)$, and (3) together imply the theorem.

Any two int.-disjoint x, y-paths in G yield edge-disjoint $x^{\prime \prime}, y^{\prime}$-paths in G^{\prime} (with added edges of the kind $u^{\prime} u^{\prime \prime}$). Hence $\lambda_{G}(x, y) \leq \lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)$.

Any two edge-disjoint $x^{\prime \prime}, y^{\prime}$-paths in G^{\prime} are also vertex int.-disjoint, and hence correspond to int.-disjoint x, y-paths in G. Hence $\lambda_{G}(x, y) \geq \lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right)$, which together with the previous para yields

$$
\begin{equation*}
\lambda_{G}(x, y)=\lambda_{G^{\prime}}^{\prime}\left(x^{\prime \prime}, y^{\prime}\right) . \tag{3}
\end{equation*}
$$

Now $(*),(2)$, and (3) together imply the theorem.
Remark: Since we can find maximum flows in n-vertex networks in $O\left(n^{3}\right)$ iterations, the last proofs yield polynomial algorithms for finding connectivity, edge connectivity and minimum separating sets in directed graphs.

Matchings in bipartite graphs: using flows

Let G be a bipartite graph with parts X and Y. Construct an auxiliary network $H=\left(V, E, s, t,\{\mathbf{c}(e)\}_{e \in E}\right)$ as follows.

We take $V=V(G) \cup\{s, t\}$, orient each edge of G from X to Y and make the capacity of each such edge equal $n=|X|+|Y|$, add the set of edges $\{s x: x \in X\} \cup\{y t: y \in Y\}$, each of capacity 1.

Theorem 4.19: For each bipartite graph $G, \alpha^{\prime}(G)=M(H)$.

Theorem 4.19: For each bipartite graph $G, \alpha^{\prime}(G)=M(H)$.
Proof. Let $L=\left\{x_{i} y_{i}: 1 \leq i \leq k\right\}$ be a matching in G with $|L|=k=\alpha^{\prime}(G)$. For $i=1, \ldots, k$, let P_{i} denote the path s, x_{i}, y_{i}, t in H. Then the value of the flow

$$
\sum_{i=1}^{k} \phi\left(P_{i}, 1\right)
$$

is $k=\alpha^{\prime}(G)$. This proves $\alpha^{\prime}(G) \leq M(H)$.

Theorem 4.19: For each bipartite graph $G, \alpha^{\prime}(G)=M(H)$.
Proof. Let $L=\left\{x_{i} y_{i}: 1 \leq i \leq k\right\}$ be a matching in G with $|L|=k=\alpha^{\prime}(G)$. For $i=1, \ldots, k$, let P_{i} denote the path s, x_{i}, y_{i}, t in H. Then the value of the flow

$$
\sum_{i=1}^{k} \phi\left(P_{i}, 1\right)
$$

is $k=\alpha^{\prime}(G)$. This proves $\alpha^{\prime}(G) \leq M(H)$.
Now consider a flow f in H with $M(f)=M(H)$ obtained using FF-algorithm. By Theorem 4.16, $f=\sum_{i=1}^{k} \phi\left(P_{i}, \rho_{i}\right)$, where each ρ_{i} is a positive integer. Since each of these paths contains two edges of capacity $1, \rho_{1}=\ldots=\rho_{k}=1$.

Theorem 4.19: For each bipartite graph $G, \alpha^{\prime}(G)=M(H)$.
Proof. Let $L=\left\{x_{i} y_{i}: 1 \leq i \leq k\right\}$ be a matching in G with $|L|=k=\alpha^{\prime}(G)$. For $i=1, \ldots, k$, let P_{i} denote the path s, x_{i}, y_{i}, t in H. Then the value of the flow

$$
\sum_{i=1}^{k} \phi\left(P_{i}, 1\right)
$$

is $k=\alpha^{\prime}(G)$. This proves $\alpha^{\prime}(G) \leq M(H)$.
Now consider a flow f in H with $M(f)=M(H)$ obtained using FF-algorithm. By Theorem 4.16, $f=\sum_{i=1}^{k} \phi\left(P_{i}, \rho_{i}\right)$, where each ρ_{i} is a positive integer. Since each of these paths contains two edges of capacity $1, \rho_{1}=\ldots=\rho_{k}=1$.

Moreover, since each $x \in X$ has only one in-neighbor, and each $y \in Y$ has only one out-neighbor, each of the paths P_{i} has the form s, x_{i}, y_{i}, t and all edges $x_{i} y_{i}$ are disjoint. This proves $\alpha^{\prime}(G) \geq M(H)$ and hence the theorem.

Main results in Chapter 4

1. Characterization theorem for 2-connected graphs. (Theorem 4.6) (Theorem 4.2.4 in the book).
2. Max-flow Min-cut Theorem (Theorem 4.18).

Main results in Chapter 4

1. Characterization theorem for 2-connected graphs. (Theorem 4.6) (Theorem 4.2.4 in the book).
2. Max-flow Min-cut Theorem (Theorem 4.18).
3. Menger Theorems (Theorems 4.8, 4.10, 4.11, 4.12 and 4.13)

A polygonal curve is a curve composed of finitely many line segments.

A drawing of a graph G is a function $\varphi: V(G) \cup E(G) \rightarrow \mathbf{R}^{2}$ s.t.
(a) $\varphi(v) \in \mathbf{R}^{2}$ for every $v \in V(G)$;
(b) $\varphi(v) \neq \varphi\left(v^{\prime}\right)$ if $v, v^{\prime} \in V(G)$ and $v \neq v^{\prime}$;
(c) $\varphi(x y)$ is a polygonal curve connecting $\varphi(x)$ with $\varphi(y)$.

A crossing in a drawing of a graph is a common point in the images of two edges that is not the image of their common end.

A graph G is planar if it has a drawing φ without crossings.

A graph G is planar if it has a drawing φ without crossings.
A plane graph is a pair (G, φ) where φ is a drawing of G without crossings.

A graph G is planar if it has a drawing φ without crossings. A plane graph is a pair (G, φ) where φ is a drawing of G without crossings.

Two distinct plane graphs.

Remind me about Gas-Water-Electricity Problem.

A face of a plane graph (G, φ) is a connected component of $\mathbf{R}^{2}-\varphi(V(G) \cup E(G))$.

A face of a plane graph (G, φ) is a connected component of $\mathbf{R}^{2}-\varphi(V(G) \cup E(G))$.
The length, $\ell\left(F_{i}\right)$, of a face F_{i} in a plane graph (G, φ) is the total length of the closed walk(s) bounding F_{i}.

A face of a plane graph (G, φ) is a connected component of $\mathbf{R}^{2}-\varphi(V(G) \cup E(G))$.
The length, $\ell\left(F_{i}\right)$, of a face F_{i} in a plane graph (G, φ) is the total length of the closed walk(s) bounding F_{i}.

D

A face of a plane graph (G, φ) is a connected component of $\mathbf{R}^{2}-\varphi(V(G) \cup E(G))$.
The length, $\ell\left(F_{i}\right)$, of a face F_{i} in a plane graph (G, φ) is the total length of the closed walk(s) bounding F_{i}.

D

Definition of dual graphs: given in class (and book).

