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For a bipartite multigraph, the list chromatic index is equal to the chromatic
index (which is, of course, the same as the maximum degree). This generalizes
Janssen's result on complete bipartite graphs K, , with m #n; in the case of K, ,
it answers a question of Dinitz. (The list chromatic index of a multigraph is the
least number n for which the edges can be colored so that adjacent edges get
different colors, the color of each edge being chosen from an arbitrarily prescribed
list of n different colors associated with that edge.) © 1995 Academic Press, Inc.

1. INTRODUCTION

The study of list coloring problems (i.e., graph coloring problems where
cach of the elements to be colored has its own list of permissible colors)
was initiated by Vizing [9] and, independently but later, by Erdds, Rubin,
and Taylor [3], whose terminology we follow.

Consider a graph G, with vertex set V=V (G) and edge set E= E(G),
and two functions f, g: V' — N, where N is the set of nonnegative integers.
The graph G is (f:g)-choosable if, given any sets A, (ve V') of “colors”
with |4,| =f(v), we can choose subsets B, 4, with |B,| =g(v) so that
B,n B.=J whenever {u,v}eE. The graph is n-choosable if it is (f: g)-
choosable for the constant functions f(v)=n, g(v)= 1. The choice number
ch(G) is the least number n for which G is n-choosable. The chromatic
index of a multigraph H is the chromatic number of the line graph L(H);
analogously, the list chromatic index of H is the choice number of L(H ).
(The list chromatic index has also been called, rather confusingly, the “list
chromatic number.”)

Clearly, ch(G) = x(G) for every graph G; the example ch(K; ;) =3 shows
that the inequality can be strict [3, pp. 127, 145, 153]. It has been conjec-
tured that ch(G)= y(G) whenever G is a line graph; in other words, that
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the list chromatic index of a multigraph is always equal to the (ordinary)
chromatic index. This is the list coloring conjecture (LCC); see Alon [1, p.
3] or Haggkvist and Chetwynd [6, p. 509] for the history. (Some authors
state the LCC only for simple graphs; however, the formulation in [6]
explicitly includes multigraphs.)

The LCC has been proved only in a few special cases. Janssen [7]
proved it for the graphs K, , with m # n. We generalize Janssen’s result by
proving the LCC for all bipartite muitigraphs (Theorem 4.1). In particular,
L(K,, ,) is n-choosable; this answers a question of Dinitz [3, p. 157]. The
proof is very simple and uses no new ideas.

In Section 2 we relate an observation of Bondy, Boppana, and Siegel [2,
p. 129] on the choosability of digraphs in which every induced subdigraph
has a kernel; in particular, the choice number of such a digraph is at most
d+ 1, where 4 is the maximum outdegree. In Section 3 we note that, if A
is a bipartite multigraph, every “normal orientation” of L{H ) has a kernel;
this is just the “stable marriage theorem” of Gale and Shapley [4, 5] as
reformulated and generalized by Maffray [8]. In Section 4 we prove
Theorem 4.1 by showing that, if H is bipartite with chromatic index n, then
L(H) has a normal orientation with maximum outdegree n — 1; for this we
use a generalization of the “Latin rectangle orientation” which was used
implicitly by Alon and Tarsi [2, p. 132] and explicitly by Janssen [7,
p. 245]. The stable marriage construction is incorporated in the proof of
Theorem 4.1, which can be read independently of Section 3. In Section 5
we discuss the unsolved problem of finding the best possible choosability
results for L(K, ,); some unpublished results of Taylor are quoted by
permission.

2. KERNELS AND CHOOSABILITY

Consider a digraph D = (¥, E). We use the notation u — v to mean that
(u, v)e E. We will assume that D is loopless and that any two vertices are
joined by at most one arc in each direction; thus, the outdegree of a vertex
vis od(v)={{u:v—u}|, and the closed neighborhood N[v]= {u:v—u or
v=u} has cardinality [N[v]| = od(v)+ 1. The underlying graph of D is the
graph G=(V, E), where E={{u,v}:u—v or v—u}. The digraph D is
(f: g)-choosable if its underlying graph is (f: g)-choosable. A kernel of D
is an independent set K< V such that, for each vertex ve V'\K, there is a
vertex ue€ K such that v — u. A kernel of the subdigraph of D induced by
a set S< V will also be called a kernel of S.

Alon and Tarsi attributed the following observation to Bondy, Boppana,
and Siegel [2, Remark 2.4, p. 1297; it was stated for the special case where
D has no odd directed cycles and g(v) = 1, but the generalization is obvious.
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LemMma 2.1. (Bondy, Boppana, and Siegel). Let D be a digraph in which
every induced subdigraph has a kernel. If f,g:V(D)— N are such that
S)2 T npo18(u) whenever g(v) >0, then D is (f: g)-choosable.

Proof. Let V=V (D). We use induction on ¥, ., g(v). Let W= {veV:
g(v)>0}; we can assume that W## . Let sets 4, (ve V) with |4,|=f(v)
be given. Choose cel,cp A4,, let S={veW:ceAd,}, and let K be a
kernel of S. Define g': V—- N by setting g'(r)=g(v)~1 for ve K and
g'(v)y=g(v) otherwise, and let f'(v)=|A\{c}|. Then 3 .., g (v)<
> e g(v), and f(v) =3 ue N[v] g'(«) whenever g'(v)>0. By the induc-
tion hypothesis, D is (f': g’ )-choosable. Thus there are sets B, < A4,\{c},
with |B.|=g'(v), such that B, n B, = whenever # and v are adjacent.
Define sets B, < A, by setting B,=B,u {c} if ve K and B, = B, otherwise;
then |B,| =g(v) for all ve V, and B,n B,= (J if u and v are adjacent. |

A graph is (m :n)-choosable if it is (f:g)-choosable for the constant
functions f(v) =m, g(v) = n. See Erdds, Rubin, and Taylor [3, p. 155] and
Alon [1, pp. 22-23, 28-29] for more on (m : n)-choosability.

COROLLARY 2.2. Let D be a digraph, with maximum outdegree n— 1, in
which every induced subdigraph has a kernel. Then D is (kn : k)-choosable for
every k; in particular, D is n-choosable.

3. EXISTENCE OF KERNELS

A cligue in a digraph is a nonempty set of vertices such that any two are
joined by an arc in at least one direction. A digraph is normal if every
clique has a kernel, which necessarily consists of a single vertex. An orienta-
tion of a graph G is any digraph (possibly containing antiparallel arcs)
having G as its underlying graph. A graph is solvable if every normal
orientation has a kernel. It is easy to see that every induced subgraph of
a solvable graph is solvable. Maffray gave the following characterization of
solvable line graphs [8, Theorem 1, p. 2].

THeOREM 3.1 (Maffray). A line graph (of a multigraph) is solvable if and
only if it is perfect.

We will use only the following special case of Maffray’s theorem.

COROLLARY 3.2. The line graph of a bipartite multigraph is solvable.

(Thus, if D is a normal orientation of the line graph of a bipartite multigraph,
then every induced subdigraph of D has a kernel.)
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The “stable marriage theorem” of Gale and Shapley [4, 57 says, in our
terminology, that the graph K, , (hence every simple bipartite graph) has
a solvable line graph. From this point of view, Corollary 3.2 is just the
stable marriage theorem extended to multigraphs; moreover, the proof of
this special case of Maffray’s theorem is similar to the Gale-Shapley argu-
ment. Still, it was Maffray’s formulation that motivated the present work;
I am indebted to Professor Bondy for pointing out the connection with
stable marriages.

4, THE BIPARTITE LCC PrROVED

If K is a set of vertices in a digraph, we say that K absorbs a vertex v if
N[v]~ K# ¢, and that K absorbs a set S of vertices if K absorbs each
vertex in S. Thus, a kernel of S is just an independent subset of S that
absorbs S.

THEOREM 4.1. Let H be a bipartite multigraph, let G=L(H), and
suppose that G is n-colorable. Then G is (kn:k)-choosable for every k; in
particular, G is n-choosable.

Proof. Let V=V (G)=FE(H). Let (X, Y) be a bipartition of H. For
xeV(H), we call the set {ve V:v is incident with x} a row if xe X, a
column if x e Y. Thus, two elements of V" are adjacent just in case they are
in the same row or the same column (or both). For ve V, let R(v) and C(v)
be the row and the column, respectively, containing v.

Let /2 V> {1, .., n} be a legal coloring, ic., f is one-to-one on each row
and column. Let D be the orientation of G in which u— v if either
R(u)=R(v) and f(u)>f(v) or else C(u)=C(v) and f(u)<f(v). (If « and
v are parallel edges in H, we have both ¥ — v and v — u.) It is easy to see
that od(v) <n for each ve V, since f is one-to-one on N[v]. By Corollary
2.2, then, all that remains is to show that every induced subdigraph of D
has a kernel. This follows immediately from Corollary 3.2, as D is clearly
“normal”; for the convenience of the reader, here is a direct proof.

We show, by induction on |S|, that every set S < V' has a kernel. Given
ScV, let T={veS: f(v)<f(u) whenever v#ueR(v)n S}. If T is inde-
pendent, then 7 is a kernel of S, as T clearly absorbs S; thus we can
assume that 7 is not independent. Then 7 has two elements in the same
column: say v,,v,€7T, C(v,)=C(v,)=C, f(v,) < f(v;). Choose v,eCn S
so that f(vy) <f(u) whenever v, # u e C n S. By the definition of 7 and the
choice of vy, we have N[v,]nS=CnS<=N[r,]. By the induction
hypothesis, S\{vo} has a kernel K. Since v,e S\{v,}, it follows that K
absorbs v,, ie, N[v,1n K# &. Since N[vg]n K2 N[v, ] K, it follows
that K also absorbs v,, and so K is a kernel of S. |



LIST CHROMATIC INDEX 157

Note, by the way, that the general statement of Theorem 4.1 can be
derived from the case k = 1; just split each edge of H into k paraliel edges.

COROLLARY 4.2. The graph L(K, ,) is (kn : k)-choosable for every k; in
particular, it is n-choosable.

The question, whether L(K,, ,) is n-choosable, was raised by J. Dinitz [3,
p. 157]. According to Alon [1, p. 27], the answer was known for n < 4 and
n==6, having been proved by H. Taylor (unpublished) for n=3 and by
Alon and Tarsi [2, p. 132] for n=4 and n=6. Janssen, by proving the
LCC for X, ,,,, showed that L(K, ,} is always (n+ l)-choosable [7,
Theorem 2.4, p. 248].

5. THE GENERALIZED DINITZ PROBLEM

Let G,=L(X, ,) While Corollary 4.2 is “best possible” in a certain
sense (G, is not (kn—1 : k)-choosable for k> 1), many questions are left
open. A graph is f~choosable if it is (f: g)-choosable for the constant func-
tion g(v)=1. The following natural generalization of the Dinitz problem
was proposed independently by (at least) H. Taylor and D. Knuth
(personal communications) and the author.

Problem. For what functions f: V(G,)— N is G, f-choosable?

By Lemma 2.1 and Corollary 3.2, G, is f-choosable for the function
f(vy=od,(v)+ 1, where D is any normal orientation of G,,. For n=2, the
functions obtained in this way are the minimal functions f for which G,
is f-choosable; however, for n=13 the constant function f(v)=3 is not
minimal.

Consider a function f: ¥(G5)— {1,2,3}, and let W,={v:f(v)=i}. In
unpublished work, Taylor proved that G; is f~choosable if W, = ¢ and
|W,]=1; on the other hand, he found examples showing that G5 is not
f-choosable if W, # ¥, or if W, contains cither two adjacent of three
independent vertices. The remaining case has been settled by a tedious case
analysis showing that G, is f~choosable if W, = ¢ and W, consists of two
independent vertices.

Let &, be the least k such that G, is f~choosable when f(vy) =k for
some vertex vy, while f(v)=n for v#uv,. It is known that n2<k,<n
(lower bound due to Taylor) and k;=2.

Problem. 1Ttis k,<n for all n>2?
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