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W
illiam Thomas Tutte (rhymes with
“hut”) was the leading graph and ma-
troid theorist of his generation. His
first mathematical paper appeared in
1940 and his last in 2000. According

to a list published in 1969, between 1940 and 1949
there were fifty-five papers published in graph the-
ory, eleven of them by Tutte; in 2000, more than
1,500 books and papers appeared that were clas-
sified under 05C (graph theory) on MathSciNet.
Like graph theory, matroid theory has grown dra-
matically from its introduction in 1935 by Hassler
Whitney: MathSciNet shows in the period 1990–
2000 over 1,000 items were published having the
word “matroid” in the title or review. Despite early
contributions by Garrett Birkhoff, S. Mac Lane, and
B. L. van der Waerden, the first major advances in
matroid theory were made by Tutte in his 1948
Cambridge Ph.D. thesis [3], which formed the basis
of an important sequence of papers published 
over the next two decades. Tutte’s work in graph
theory and matroid theory has been profoundly 
influential on the development of both the content
and the direction of these two fields.

To summarize Tutte’s notable contributions, he
broke the German Army High Command’s code [10]
during World War II, he advanced graph theory
from a subject with one text (D. König’s) toward its
present extremely active state, and he developed

Whitney’s definitions of a matroid into a substan-
tial theory.

Tutte’s contributions to graph and matroid 
theory were immense, but his terminology was
idiosyncratic, frequently at variance with most
other researchers. Hardest of all for a novice ap-
proaching Tutte’s work is the fact that he often used
standard terms in graph and matroid theory in
ways that differ from their conventional usage.
While Tutte’s many theorems are frequently cited
today, much of his terminology has been discarded.
In the descriptions of his matroid results that 
appear below, the terminology used follows
J. Oxley [2] and, with minor variations, is fairly
universally accepted. For his graph theory results,
we follow the terminology of D. West [9]. To 
describe Tutte’s results and their significance, we
shall need to introduce some of this terminology
together with some well-known results.

Background
A graph may be viewed as consisting of a set of
points in space, called vertices, and segments of
curves joining pairs of vertices; these curves are
called edges and share only their ends with other
edges and with vertices of the graph. For example,
the complete graph Kn consists of n vertices and(
n
2

)
edges, with one edge joining every two distinct

vertices. If an edge of a graph joins a vertex to 
itself, the edge is called a loop. If two or more
edges join the same pair of vertices, the edges are
said to be parallel. A graph is simple if it has no
loops and no parallel edges. The degree of a 
vertex in a graph is the number of ends of edges
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meeting that vertex. Thus a loop contributes 2 to
the degree of the vertex it meets. Since each edge
has two ends, the sum of the degrees of a graph is
always even. A graph is cubic if every vertex has
degree three. A path is an alternating sequence of
vertices and edges, each edge joining the vertex 
before it to the vertex after it in the sequence, with
no repeated vertices. A cycle is formed from a path
by adding an edge joining its end vertices. A graph
is connected if between every two distinct vertices
there is a path. A forest is a graph with no cycles,
and a tree is a connected forest. A graph is said to
be Hamiltonian if it has a cycle that includes all of
the vertices of the graph, and such a cycle is called
a Hamiltonian cycle.

Abstracting from the behavior of linearly inde-
pendent sets of columns of a matrix, in 1935, Whit-
ney defined a matroid M to consist of a finite set
E (or E(M)) and a collection I (or I(M)) of subsets
of E called independent sets with the properties that
the empty set is independent; every subset of an
independent set is independent; and if one inde-
pendent set has more elements than another, then
an element can be chosen from the larger set to 
adjoin to the smaller set to produce another inde-
pendent set. A set that is not independent is called
dependent, and minimal such sets are called circuits.
For a matrix A over a field F, if E is the set of col-
umn labels on A and I is the set of subsets of E
that label linearly independent sets of columns,
then (E, I) is a matroid, M[A]. Such a matroid is said
to be representable over the field F. If G is a graph,
E is its set of edges, and I is the collection of the
edge sets of the forests in G , then (E, I) is a ma-
troid, M(G) , called the cycle matroid of G . Its cir-
cuits are the edge sets of the cycles inG . A matroid
that is isomorphic to the matroid M(G) for some
graph G is called graphic. Representable and
graphic matroids were introduced by Whitney, and
these classes have motivated much of the devel-
opment of matroid theory ever since.

A graph is planar if it can be drawn in the plane
without edges crossing, and it is a plane graph if
it is so drawn in the plane. The drawing separates
the rest of the plane into regions called faces. Every
plane graph G has a dual graph G∗ , formed by in-
troducing a vertex of G∗ for each face of G and join-
ing two vertices of G∗ by k edges if and only if the
corresponding faces of G share k edges in their
boundaries. Whitney defined the dual of a graph
abstractly and showed that a graph has such a
dual if and only if it is a planar graph.

For arbitrary matroids there is a natural notion
of a dual matroid that extends the notion of dual-
ity for planar graphs. For a matroid M on E, let B
be the collection of bases, that is, maximal inde-
pendent sets, of M . Clearly B uniquely determines
M. The collection {E − B : B ∈ B} is the set of bases

of another matroid on E, namely, the dual M∗ of
M . Evidently,

(1) (M∗)∗ =M.
If G is a planar graph and G∗ is a dual graph of G ,
then (M(G))∗ =M(G∗) . If G is not planar, then
(M(G))∗ is still defined, but one can show that it is
not graphic. So the class of graphic matroids is not
closed under duality, since the dual of a member
of the class need not be in the class. It is easy to
show that all bases of a matroid M have the same
cardinality; we call this the rank r (M) of M .

We will define further concepts relating to graphs
and matroids as we need them.

Tutte’s Rise to Prominence
William Thomas Tutte was born at Fitzroy House
in Newmarket, Suffolk, England, on May 14, 1917,
and died on May 2, 2002, in Waterloo, Ontario. He
attended Trinity College, Cambridge, from 1935
until January 1941, majoring in chemistry and
earning his bachelor’s degree in 1939 and his 
master’s in 1941. He spent the rest of World 
War II working at Bletchley Park.

At the end of the war, because of his
war work, Tutte was given a Fellow-
ship at Trinity College. The decision
to so honor him was justified: With lit-
tle help from his advisor, Shaun Wylie,
he completed a 417-page thesis in three
years, graduating in 1948. The thesis
is remarkable both for its contents and
for its omission of his work on Hamil-
tonian cycles, which he published while
he was writing the thesis.

For the thesis Tutte invented a class
of algebraic structures that he called
“nets” and that later he learned were
equivalent to representable matroids.
He developed a theory of “cleavages”
of a 2-connected graph into 3-
connected parts, thus deepening a 
result of Whitney. He introduced the
dichromatic polynomial, now called
the “Tutte polynomial”, one of the more
important functions in graph and 
matroid theory. In addition, his thesis introduced
matroid minors, now the most important and
widely studied of matroid substructures. Finally,
he developed this theory to the point that he was
able to characterize graphic matroids by giving a
list of matroids, which he called “gnarls”, such that
a matroid is graphic if and only if it has no gnarl
as a minor.

In 1948 H. S. M. Coxeter helped Tutte get a po-
sition at the University of Toronto. Tutte served
there until 1962, when the University of Waterloo
(founded in 1958) recruited him. Ralph Stanton,
head of the mathematics department at that time,
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went to Toronto with Gerald Berman to talk to
Tutte and his wife, Dorothea (married 1949). The
opportunity appealed to Tutte, both because it of-
fered the possibility of advancement and because
he and Dorothea enjoyed nature and liked the rel-
atively rural setting of Waterloo. Tutte accepted the
position, and he and Dorothea bought a house in
the small nearby town of West Montrose, next to
a covered bridge. They enjoyed showing their lovely
garden and nearby scenery, and they could name
every bird and plant in the garden. They liked hik-
ing. Bill often organized hiking trips and even
bought wilderness properties for them to hike in
as birthday presents for Dorothea.

Mathematical Beginnings and Blanche
Descartes
Not long after he started his undergraduate stud-
ies at Cambridge, Tutte was introduced by his
chess-playing friend R. Leonard Brooks to two of
Brooks’s fellow mathematics students, Cedric A. B.
Smith and Arthur Stone. The four became fast
friends, and Tutte came to refer to the group as “the
Gang of Four” or “the Four Horsemen” [8]. The
Four joined the Trinity Mathematical Society and
devoted many hours to studying unsolved mathe-
matics problems together.

They were most interested in the problem of
squaring a rectangle or square, that is, of finding
squares of integer side-lengths that exactly cover,
without overlaps, a rectangle or square of integer
side-lengths. If the squares are all of different sizes,
the squaring is called perfect. While still under-
graduates at Cambridge, the Four found an inge-
nious solution involving currents in the wires of an
electrical network. Solving this network gives the
required sizes of the squares as the currents in the
wires. Their first perfect squared square and the
accompanying theory were published in 1940 [4,
pp. 10–38]; it was anticipated by one year by a per-
fect squared square found empirically by R. P.
Sprague.

About this work Tutte said, “This [research]
soon called for much graph theory. It was linked,
through a ‘Smith diagram,’ with the study of 3-
connected planar graphs…, and with Kirchhoff’s
Laws for electrical circuits.… It was linked through

rotor theory…with graph symmetry.… It was linked
through the tree-number…with the theory of graph
functions satisfying simple recursion formulae…”
[5, p. xix].

The Gang of Four were typically lively under-
graduates. They decided to create a very special
mathematician, Blanche Descartes, a mathematical
poetess. She published at least three papers, a
number of problems and solutions, and several
poems. Each member of the Four could add to
Blanche’s works at any time, but it is believed that
Tutte was her most prolific contributor.

The Four carefully refused to admit that Blanche
was their creation. Visiting Tutte’s office in 1968,
Hobbs remarked, “Sir, I notice you have two copies
of that proceedings. I wonder if I could buy your
extra copy?” Tutte replied, “Oh, no, I couldn’t sell
that. It belongs to Blanche Descartes.”

Bletchley Park
At about the time Tutte completed his master’s in
chemistry in 1941, his tutor, Patrick Duff, recom-
mended him to the famous code-breaking group
at Bletchley Park. After training at the Code and
Cypher School in London, Tutte was assigned to the
research section and there to a group trying to
break the German Army High Command’s code
that the British called “FISH”. It was produced by
the Lorenz SZ 40/42 teleprinter cypher attach-
ment, which generated code in the 5-bit 32-letter
Baudot Teleprinter Code alphabet [10]. Unlike 
the case of the 3- or 4-wheel Enigma machine, 
the British did not have a Lorenz code machine, but
the clear 12-word preamble in the early FISH trans-
missions suggested that it had 12 wheels [10], [6].
Its code was produced letter-by-letter by a mod 2
addition of a letter from the message and a letter
from a key produced by the machine. Thus, the 
message letter R (code 01010) might be added to
the key letter A (11000), producing the code letter
D (10010).

On August 30, 1941, a clerk in Athens, Greece,
sent a Lorenz-coded message of about 4,000 char-
acters. Apparently the receiving office in Vienna
didn’t quite get it, for they asked for a repeat.
Proper protocol would require that the message be
sent either exactly as before or with a new setting
on the wheels of the machine, but the clerk recoded
it with the same initial setting as before and sent
it again with some variations in abbreviations, spac-
ing, and punctuation. Even in such circumstances
breaking the code is not easy, but eventually John
Tiltman found 3,976 characters of the key pro-
duced by the machine with that wheel setting.
Tutte sought patterns within this key, and after 
a few months’ work he discovered a repetitive 
pattern of length 574 = 14 · 41. This indicated 
that one of the wheels had 41 teeth. It took still
more time to fully find the design of the Lorenz 
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machine, but he and the others in his section
worked out the placement and number of teeth of
the 12 wheels within the machine. Their decoding
efforts were paralleled by German efforts to im-
prove the code, so there was a constant struggle
between the German encrypters and the British
codebreakers. The rest of the story is too long for
this article. Suffice it to say that Tutte’s work led
to the development of the first working electronic
computer, Colossus, to run decoding algorithms.
By the end of the war, ten Colossus machines were
in use [10].

Fragments and Hamiltonian Graphs
A summary of Tutte’s work is simplified by the fact
that, in the commentaries on his selected works [4]
and in other published lectures [7], [8], he gave not
only many useful historical facts about the context
in which his work was done but also numerous in-
sights into his thinking when he was developing his
many theorems. We draw heavily from these works
in what follows.

A graph with more than k vertices is k -
connected if it cannot be disconnected by remov-
ing k− 1 vertices. A cycle with exactly three 
edges is a triangle. If every face of a plane graph
is a triangle, the graph is a plane triangulation. 
A cycle C in a plane graph G is separating if G has
vertices both inside and outside C.

Given a cycle C in a graph G , a fragment of C,
or a C-fragment, consists either of an edge (and its
ends) not in C but joining two vertices of C, or of
a component Q of G− V (C) together with all edges
(and their ends) from vertices of Q to vertices of
C. The vertices a C-fragment shares with C are
called its vertices of attachment.

Tutte introduced fragments in his thesis. He
used these tools in several of his graph theory 
papers, including his 1960 paper “Convex repre-
sentations of graphs” and his important paper
“How to draw a graph” [4, pp. 364–88]. He used a
generalization of fragments to matroids in prov-
ing his characterization of graphic matroids (1959).

The question of whether a graph has a Hamil-
tonian cycle is one of the prime exemplars of an
NP-complete problem and is a special case of the
well-known traveling salesman problem. Conse-
quently, finding significant classes of graphs that
certainly are or are not Hamiltonian is important.
In 1884 P. G. Tait conjectured that every 3-
connected planar cubic graph has a Hamiltonian
cycle. If true, a proof of this conjecture would have
also proved the famous Four Color Conjecture.

In his occasional free time at Bletchley Park,
Tutte thought about Tait’s conjecture. He discov-
ered a Hamiltonian graph with the remarkable
quality that it had an edge through which all Hamil-
tonian cycles passed. He then used three copies of

that graph to construct a counterexample to Tait’s
conjecture [4, pp. 47–50].

In 1931 H. Whitney had shown that a plane 
triangulation with no separating triangle is 
Hamiltonian. In 1956 Tutte extended Whitney’s
theorem by showing that every connected planar
graph G with at least one cycle has a cycle C, all
of whose fragments have at most three vertices of
attachment. A nontrivial consequence of this is
the following theorem of Tutte.

Theorem 1. Every 4-connected planar graph is
Hamiltonian.

Excluded-Minor Theorems
The notion of a graph minor was introduced in 
the 1930s and early 1940s by K. Wagner and
H. Hadwiger. Tutte’s thesis generalized this 
notion to matroids. If M is a matroid on a set E and
I is the collection of independent sets, then for an
element e of E, there are two natural matroids on
E − {e}: the deletion M\e of e and the contraction
M/e of e. The first has as its independent sets all
members of I that are subsets of E − {e}. To spec-
ify the second, let Be be {e} when {e} is indepen-
dent, and let Be be � otherwise. Then M/e has as
its independent sets all subsets I of E − {e} for
which I ∪ Be ∈ I . These operations of deletion and
contraction are natural extensions of their name-
sakes in graph theory. Since an element e of the
cycle matroid M(G) of a graph G is just an edge
of G , the matroids M(G)\e and M(G)/e are the
cycle matroids of, respectively, the graph G\e that
is obtained from G by removing the edge e and the
graph G/e that is obtained from G by identifying
the ends of e and then deleting e. Both the graph
and the matroid operations of deletion and con-
traction commute with themselves and with each
other, so for a matroid M or a graph G , it makes
sense to talk about a matroid or a graph of the 
form M\X/Y or G\X/Y , where X and Y are disjoint
subsets of E. Such a matroid or graph is called a
minor of M or of G . (In the case of graphs, we also
allow the deletion of vertices of degree zero in
constructing a minor.) Several basic classes of 
matroids and graphs have the property that every
minor of a matroid or graph in the class is also in
the class. Indeed, the remarks above establish that
every minor of a graphic matroid is graphic. We say
that the class of graphic matroids is minor-closed.
For another example, the class of planar graphs is
minor-closed.

For any class M of matroids or graphs that is
minor-closed, there is a list of excluded minors,
that is, those matroids or graphs not inM such that
every deletion and every contraction is in M.

A matroid is binary if it is representable over the
2-element field GF (2). A matroid is regular if it 
is representable over R by a totally unimodular 
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matrix A , that is, by a 
matrix all of whose sub-
determinants are in
{0,1,−1} . In fact, regu-
lar matroids are precisely
the matroids that are rep-
resentable over all fields
(see [2, Theorem 6.6.3]),
so every regular matroid
is binary.

The class of graphic
matroids is not closed
under duality. By con-
trast, the classes of regu-

lar matroids and of binary matroids are both closed
under duality. Indeed, if [Ir | D] is an r × n matrix
representing M over a field F, then M∗ is repre-
sented over F by the (n− r )× n matrix
[−DT | In−r ], where the order of the labels on the
columns of the last matrix matches the order on
the original matrix. We observe that duality is a 
natural generalization of orthogonality, since 
every row of [Ir | D] is orthogonal to every row of
[−DT | In−r ].

Every graphic matroid is regular. To see this, let
G be a graph, orient its edges arbitrarily, and 
then take the vertex-edge incidence matrix of the
resulting directed graph. It is not difficult to show
(see [2, Proposition 5.1.3]) that the resulting matrix
A is totally unimodular and that M[A] =M(G) .
After Tutte recognized the link between the 
structures he studied in his thesis and Whitney’s
matroids, his “main preoccupation…was the 
question: ‘When is a matroid graphic?’” [7, p. 100].
Using the observations above, he divided this 
problem into three subproblems:

(i) When is a matroid binary?
(ii) When is a binary matroid regular?
(iii) When is a regular matroid graphic?

The first of these questions is the simplest and
has numerous answers. One of those given by Tutte
involves excluded minors. If A is a matrix over a
field F and e labels a column of A , then M[A]\e is
represented over F by the matrix that is obtained
by deleting the column labelled e. If e labels a zero
column, then M[A]/e =M[A]\e ; otherwise, by ele-
mentary row operations, we can transform A into
a matrix A′ in which e labels a standard basis vec-
tor. It follows from basic linear algebra that
M[A′] =M[A]; that is, these elementary row oper-
ations do not alter the matroid. Now M[A]/e is the
matroid that is represented by the matrix that is
obtained from A′ by deleting both the column 
labelled by e and the row containing the unique 
nonzero entry of e. We deduce from these obser-
vations that the class of F-representable matroids
is minor-closed. In particular, the class of binary
matroids is minor-closed. By observing that if the

matrix A above is totally unimodular, then so is 
the matrix A′, we deduce that the class of regular
matroids is also minor-closed.

Tutte’s excluded-minor answer to (i) is contained
in the next theorem. It involves a particular uniform
matroid where, for 0 ≤ r ≤ n, the uniform matroid
Ur,n is the matroid on {1,2, . . . , n} whose inde-
pendent sets consist of all subsets of {1,2, . . . , n}
with at most r elements.

Theorem 2. A matroid is binary if and only if it has
no minor isomorphic to U2,4.

The answers to Tutte’s subproblems (ii) and (iii)
were again given in terms of excluded minors but
were considerably more difficult to derive. The
Fano matroid, F7, is the matroid that is represented
over GF (2) by the matrix consisting of the seven
nonzero vectors of length 3, that is, by the matrix

A =
1 2 3 4 5 6 7

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1



.

Geometrically, F7 can be represented as in Figure 1.
There the independent sets consist of all sets of at
most three points such that no three are collinear,
where the curved line through 4, 5, and 6 indi-
cates that {4,5,6} is dependent.

It is straightforward to show that the Fano 
matroid is not regular but that all of its proper 
minors are, so F7 is an excluded minor for the class
of regular matroids. There is another excluded
minor for the class of regular matroids that is 
easily derived from F7, namely, its dual F∗7 .

Tutte noted that deletion, contraction, and du-
ality are related by the following beautiful identity:

(2) (M\e)∗ =M∗/e.

Combining this with (1), we get

(3) (M/e)∗ =M∗\e.
We conclude, since the class of regular matroids
is closed under duality, that F∗7 is another excluded
minor for this class. Tutte answered subproblem (ii)
by proving the following.

Theorem 3. A binary matroid is regular if and only
if it has no minor isomorphic to F7 or F∗7 .

On combining this with the answer to subprob-
lem (i), one obtains the following.

Corollary 4. A matroid is regular if and only if it
has no minor isomorphic to U2,4, F7, or F∗7 .

Tutte developed a geometry in which the circuits
of the matroid were “points”, and he used this 
in the development of a homotopy theorem for 
matroids by which he proved Theorem 3. He 
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Figure 1. The Fano matroid F7.
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commented [8, p. 7]: “I do not find the homotopy
theorem in the later literature. Perhaps it is men-
tioned with a warning that it is terribly long and
then the author tells of some shorter, slicker proof
of the excluded minor conditions. That is the way
of Mathematics.” Theorem 3 is a brilliant result and
was always recognized as such, but, as Tutte sug-
gests, most readers were frightened off by the
proof technique. The best currently known proof
was given by A. M. H. Gerards in 1989 and relies
only on some elementary ideas of linear algebra.
But the latter proof did not appear till some thirty
years after Tutte’s landmark result.

Tutte attacked subproblem (iii) by analogy 
with the proof by fragments of K. Kuratowski’s
theorem that a graph can be drawn in the plane if
and only if it does not have K5 or K3,3 as a minor.
Here K3,3 is the three-houses, three-utilities graph
in which every house is joined to every utility by
an edge. Tutte’s work on (iii) culminated in the fol-
lowing very pleasing generalization of Kuratowski’s
theorem.

Theorem 5. A regular matroid is graphic if and only
if it has no minor isomorphic to M∗(K5) or M∗(K3,3).

Theorems 2, 3, and 5, done in the context of nets,
first appeared in Tutte’s Ph.D. thesis [3] a decade
before their publication in a journal. These theo-
rems were the cornerstones of Tutte’s “Lectures on
Matroids” presented in 1964 at the first matroid
theory conference, which was organized by Jack 
Edmonds and was held at the National Bureau of
Standards. They are among Tutte’s best-known
contributions to matroid theory.

Tutte’s work with graph minors was eventually
taken up by his former student Neil Robertson in
collaboration with P. D. Seymour. Beginning in the
1980s, they have produced an extraordinary 
sequence of papers describing the structure of
graphs. Perhaps their most powerful result so far
is the Graph-Minor Theorem.

Theorem 6. In every infinite set of graphs, there
are two such that one is a minor of the other.

To illustrate the usefulness of this theorem,
consider the very old question of characterizing
graphs that can be drawn in a surface of genus g
without crossing edges. Kuratowski’s theorem 
established that there are exactly two excluded 
minors for the plane. Around 1980 D. Archdeacon,
H. H. Glover, J. P. Huneke, and C. S. Wang found that
there are thirty-five excluded minors for the graphs
that can be drawn in the projective plane. But the
number of excluded minors grows quickly with
the genus, and it is not obvious that the list is even
finite for other values of g. To see that the list 
is finite, suppose we have an infinite list L of 
excluded minors for a surface. Then by the Graph-
Minor Theorem one member of L is a minor of 

another. Since this is impossible by the minimal-
ity of excluded minors, L must be finite.

A matroidal conjecture related to the Graph-
Minor Theorem is given at the end of the section
below on connectivity in matroids.

Colorings, Flows, and the Tutte Polynomial
Perhaps Tutte’s most long-lasting legacy will be the
polynomial that bears his name. Tutte’s work in this
area began with Chapter 5 of his thesis. It was pub-
lished in terms of graphs in his 1947 paper “A ring
in graph theory” [4, pp. 55–69]. In a connected
graph G , a spanning tree is a tree that contains all
of the vertices of G . The spanning trees of G co-
incide with the edge-sets of bases of the matroid
M(G) . Let b(G) denote the number of spanning
trees of G . In their 1940 paper “The dissection of
rectangles into squares” [4, pp. 10–38], the Gang
of Four had noted a formula that implies that, for
all nonloop edges e of G ,

(4) b(G) = b(G\e)+ b(G/e).

Recall that G\e is obtained from G by deleting e,
while G/e is obtained from G by identifying the
ends of e and then deleting e. Tutte wrote [7, p. 53]:
“When I was doing my Ph.D. research I began to 
collect other functions of graphs that satisfied 
similar recursions.” For a graph G and a positive
integer λ, let P (G;λ) be the number of colorings of
the vertices of G using {1,2, . . . , λ} such that if two
vertices are joined by an edge, then they receive 
different colors. The smallest positive integer n for
which P (G;n) is nonzero is called the chromatic
number of G . George D. Birkhoff introduced P (G;λ)
in 1912–13. R. M. Foster made the elementary 
observation that if e is an edge of G , then

(5) P (G;λ) = P (G\e;λ)− P (G/e;λ).

Using this, it is easily shown that the function P is
a polynomial in λ; it is called the chromatic poly-
nomial of G .

Now orient the edges of G arbitrarily and let H
be an additive abelian group. An H-flow on G is an
assignment of nonzero members of H to the edges
of G such that at every vertex the total flow into
the vertex equals the total flow out from the ver-
tex, where all calculations are done in H. Tutte
showed [4, pp. 55–69] that the number of such H-
flows depends not on the specific group H but
only on the order of H. In particular, if |H| =m,
then the number of H-flows equals the number of
Zm-flows. We call the latter flows m-flows and let
F (G;m) be the number of such flows. Tutte showed
that

(6) F (G;m) = F (G/e;m)− F (G\e;m).

The polynomial F is called the flow polynomial
of G .
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These observations led Tutte in [4, pp. 55–69]
to discuss functions f on graphs that are invariant
under isomorphism:

(7) f (G1) = f (G2) if G1 � G2,

and that satisfy the rule

(8) f (G) = f (G\e)+ f (G/e)
for all nonloop edges e of G.

He also considered functions satisfying the addi-
tional condition that

(9) f (H +K) = f (H)f (K),

where H +K is the graph that is the union of the
disjoint graphs H and K. Tutte proved that a graph
function satisfying (7)–(9) is uniquely determined
once its value is known for all k on the graphs con-
sisting of a single vertex and k loops.

A cut edge of a connected graph is an edge
whose removal disconnects the graph. Tutte’s paper
[4, pp. 55–69] also introduced a 2-variable poly-
nomial, which Tutte called the dichromatic
polynomial and which is now known as the Tutte
polynomial. This polynomial satisfies (8) provided
e is not a cut edge of G . It also satisfies (7) and (9),
and, indeed, it is the universal graph invariant sat-
isfying these three conditions in a sense that will
shortly be made precise.

Much of the theory described above extends to
matroids and was developed for representable 
matroids in Tutte’s Ph.D. thesis. However, Tutte
never published his work for matroids, and it was
not until 1969 that H. H. Crapo published a fully
general matroid form of this theory.

In a matroid M on a set E(M), if X ⊆ E(M), then
M\(E(M)−X) is a matroid on the set X; its rank is
r (X) . The Tutte polynomial T (M ;x, y) of M is

∑
A⊆E

(x− 1)r (E)−r (A)(y − 1)|A|−r (A).

This polynomial has the attractive property that

T (M ;x, y) = T (M∗;y, x),

where M∗ is the dual of the matroid M . Moreover,
for a graph G with k(G) components, the chro-
matic polynomial and the flow polynomial are 
related to the Tutte polynomial via

P (G;λ) = λk(G)(−1)|V (G)|−k(G)T (M(G); 1− λ,0)

and

F (G;m) = (−1)|E(G)|−|V (G)|+k(G)T (M(G); 0,1−m).

An element e of a matroid is a loop if {e} is a
circuit of the matroid. The Tutte polynomial has
the properties that

(10) f (M1) = f (M2) if M1 �M2,

(11) f (M) = f (M\e)+ f (M/e)
if e is not a loop in M or M∗,

and

(12) f (M) = f (M\e)f (M\(E(M)− {e}))
if e is a loop of M or M∗.

In his thesis, Tutte showed that the Tutte polyno-
mial is a universal matroid invariant satisfying
(10)–(12) in the sense that if the values of f on the
two one-element matroids U1,1 and U0,1 are x and
y respectively, then f (M) = T (M ;x, y) for all ma-
troids M . Tutte never published this result, and it
was rediscovered by T. H. Brylawski and published
in 1972.

The applications of the Tutte polynomial ex-
tend well beyond graphs into such diverse areas as
coding theory, percolation theory, electrical network
theory, statistical mechanics, and knot theory.
Tutte essentially confined his interest to spanning
trees and chromatic and flow polynomials, but in
view of the importance of polynomial invariants for
knots, the link between one such invariant and the
Tutte polynomial is worth describing. Consider a
link diagram, as illustrated in Figure 2(a), where the
crossings alternate between under and over as 
the link is traversed. Such a link diagram is called
alternating. Now the faces in such a link diagram
can be colored black and white in such a way that
adjacent faces receive different colors and the 
infinite face is colored white (see Figure 2(b)). This
coloring is called the Tait coloring of the diagram
D. Let the graph S(D) have vertices corresponding
to the black faces and an edge joining two such 
vertices when they are the opposite faces of a
crossing (see Figure 2(c)). In 1985 Vaughn Jones 
introduced a single-variable polynomial for links
that now bears his name. For this and other con-
tributions to knot theory, Jones was awarded a
Fields Medal in 1990. If L is an alternating link, D
is the corresponding link diagram, and S(D) is 
the graph constructed as above, then as M. B.
Thistlethwaite showed, the Jones polynomial of L
is given, up to an easily derived factor, by an eval-
uation of the Tutte polynomial of S(D) along the
hyperbola xy = 1.

Tutte further developed the ideas introduced in
[4, pp. 55–69] in his paper “A contribution to the
theory of chromatic polynomials” [4, pp. 157–68].
This paper contained two interesting conjectures.
The first, which was settled by F. Jaeger in 1975,
asserted that there is a fixed integer n such that
every graph without a cut edge has an n-flow.
Jaeger proved this with n = 8, and subsequently
Seymour proved it for n = 6. Tutte’s second con-
jecture, the 5-Flow Conjecture, is that every graph
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without a cut edge has a 5-flow. The Petersen graph
P10 is obtained from the dodecahedron by identi-
fying antipodal vertices and then replacing each pair
of parallel edges by a single edge. It has no 4-flow,
so 5 is the best possible number in Tutte’s con-
jecture. The 5-Flow Conjecture has now been open
for almost fifty years.

The Four Color Problem, that every loopless 
planar graph has chromatic number at most four,
was a dominating influence on graph theory for
more than a century following its introduction by
F. Guthrie in 1852. In his 1966 paper “On the 
algebraic theory of graph colorings”, following a
suggestion of O. Veblen, Tutte developed what he
called a “geometrical version of the Four Color
Problem.” The ideas he introduced were further
developed by Crapo and G.-C. Rota in their 1970
consideration of the critical problem for matroids.
Let G be a graph. Since we are interested in color-
ing vertices so that every two adjacent vertices 
are colored differently, we may assume that G is
simple. Now suppose that M(G) has rank r . Take
a binary representation of M(G) , that is, a matrixA
over GF (2) such that M[A] �M(G) . Then we are 
effectively viewing M(G) as being embedded in the
r -dimensional vector space V (r ,2). In a 1966 paper
Tutte showed that the graph G has a 4-coloring if
and only if there are (r − 1)-dimensional subspaces
H1 and H2 of the embedding space V (r ,2) such that
H1 ∩H2 avoids the edges of G . He defined a k-block
to be a set F of nonzero vectors in V (r ,2) of rank
exceeding k such that F meets every subspace of
V (r ,2) of dimension r − k. Hence a k-block is a 
special type of embedded matroid. A k-block is 
minimal if no proper subset of it is also a k-block.
For instance, Tutte showed that the minimal 
1-blocks are the cycle matroids of odd cycles.

A tangential k-block is a k-block for which no
proper minor without loops is also a k -block.
Because the Petersen graph P10 has no 4-flow,
M∗(P10) is a 2-block. Indeed, it is a tangential 
2-block. Evidently, K5 is not 4-colorable, and M(K5)
is a tangential 2-block. Moreover, the Fano matroid
is a tangential 2-block. Tutte conjectured that the
only tangential 2-blocks are F7, M(K5), and M∗(P10).
He proved this conjecture for tangential 2-blocks
of rank at most 6, and B. T. Datta, in 1976 and
1981, proved the cases of rank 7 and 8. The most
significant advance toward the resolution of this
conjecture was made in 1981 by Seymour, who
proved that a tangential 2-block that is not iso-
morphic to F7 or M(K5) has a graphic dual. He used
the Four Color Theorem and his 1980 decomposi-
tion of regular matroids in his proof of this result.
A consequence of this theorem is that Tutte’s
Tangential 2-Block Conjecture is equivalent to the
following 1966 variant of the 5-Flow Conjecture
known as Tutte’s 4-Flow Conjecture.

Conjecture 7. Suppose that a graph G without cut
edges has no 4-flow. Then G has a subgraph 
contractible to P10.

Although this conjecture remains open in gen-
eral, in 1999 N. Robertson, D. Sanders, P. Seymour,
and R. Thomas settled it in the important special
case when G is a cubic graph.

Connectivity in Matroids
Tutte developed a theory of connection in graphs
[4, pp. 229–43] that he subsequently generalized
to matroids. This theory has had very important
implications in the burgeoning field of matroid
structure theory. Concerning the definition of k-
connection given earlier, Tutte writes in [4, p. 226]
that he now refers to this property as “vertical
k-connection [where, in this context, ‘vertical’ is the
adjective from the noun ‘vertex’] having come to
think of another kind of connection as more nat-
ural.” Tutte’s theory of connection, which is defined
in the next paragraph, is preserved under duality.
By contrast, the dual of a vertically 3-connected
graph need not be vertically 3-connected. For 
example, adding an edge in parallel to one of the
edges of the complete graph K4 produces a verti-
cally 3-connected graph whose planar dual has a
degree-2 vertex and so is certainly not vertically 
3-connected.

If m is a positive integer, Tutte [4, pp. 499–522]
defined {X,E(M)−X} to be an m-separation ofM
if both |X| and |E(M)−X| are at least m and
ξ(X,E(M)−X) ≤m , where

ξ(X,E(M)−X) = r (X)+ r (E(M)−X)− r (M)+ 1.

Thus, for example, if A is a matrix in block form[
A1 0
0 A2

]
, and X1 and X2 label the columns of 

[
A1
0

]

and 
[

0
A2

]
,  respectively, then {X1, X2} is a 

1-separation of M[A]. This last kind of separation
was considered by Whitney. But Tutte went 
beyond 1-separations, defining a matroid to be 
n-connected if, for all m with 1 ≤m ≤ n− 1, the 
matroid has no m-separation. In particular, for a
graph G with at least four vertices, M(G) is 
3-connected if and only if G is both (vertically) 

Figure 2.
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3-connected and simple. In his 1961 paper “A 
theory of 3-connected graphs” [4, pp. 229–43],
Tutte proved a graph result which, for us, is most
usefully stated in the matroid language above. 
An n-wheel Wn is the graph that is obtained from
a cycle Cn with n edges by adding a new vertex v
and then joining v to every vertex of Cn . The cycle
Cn is called the rim of the wheel. Note that, in 
particular, W3 � K4.

Theorem 8. Let G be a graph with at least four 
vertices and no isolated vertices. Suppose that
M(G) is 3-connected but that, for all edges e of G ,
neither M(G)\e nor M(G)/e is 3-connected. Then
G is isomorphic to a wheel.

Some five years later Tutte extended the last 
result from graphic matroids to matroids in gen-
eral. The extension required the introduction of a
new class of matroids. This class is constructed
from the wheels using the following general
method. If C is a circuit of a matroid M such that
E(M)− C is a circuit of M∗, then |C| = r (M) and
there is a new matroid M′ that has B(M)∪ {C} as
its set of bases. We say that M′ has been obtained
from M by relaxing C. In particular, the rim Cn of
the wheel Wn is a circuit of M(Wn) whose comple-
ment is a circuit of M∗(Wn). The matroid M(Wn) is
also called an n-wheel. Relaxing Cn in M(Wn)
gives the n-whirl Wn . In his very important paper
“Connectivity in matroids” [4, pp. 499–522] Tutte
proved the following:

Theorem 9. Let M be a 3-connected matroid with
at least four elements. If, for all elements e of M ,
neither M\e nor M/e is 3-connected, then M is a
wheel or a whirl.

A consequence of the last two theorems is that
every nontrivial 3-connected matroid or graph can
be built up one element at a time from a wheel or
a whirl so that all intermediate matroids or graphs
are 3-connected, where the two allowable building-
up operations are the reverses of deletion and 
contraction.

An important result developed by Tutte during
his consideration of separation and connection in
matroids appears in the 1965 paper “Menger’s The-
orem for matroids”. The significance of this result
has only recently been realized more than thirty
years after its publication. We follow J. Geelen and
G. Whittle (2002) in describing how this result can
be used and its link to Menger’s Theorem. Let G
be a graph with edge set E and suppose X ⊆ E . The
vertex boundary of X is the set of vertices that
meet both X and E −X . Now let X and Y be dis-
joint subsets of E, each having vertex boundary of
size k. We can contract X onto Y if it is possible to
find a minor of G with edge set X ∪ Y such that
the vertex boundary of X has size k in the minor.
Menger’s Theorem for graphs implies that X can

be contracted onto Y if and only if G has no 
vertex cut of size less than k that separates X and
Y. Rather than describe Tutte’s matroid result in
full generality, we consider it in the special case 
of a rank-r matroid M represented over a field F.
Effectively, we can view E(M) as a multiset of 
elements of the vector space V (r ,F). For a subset
X of E(M), the subspace boundary is the intersec-
tion of the spans of X and E(M)−X. The rank of
this subspace boundary is ξ(X,E(M)−X)− 1. Now
suppose that X and Y are disjoint subsets of E(M)
such that both ξ(X,E(M)−X) and ξ(Y,E(M)− Y )
equal k. Tutte’s theorem asserts that the subspace
boundary of X can be contracted onto the sub-
space boundary of Y provided that M has no smaller
separations separating X from Y, that is, provided
ξ(X′, Y ′) ≥ k for all partitions {X′, Y ′} of E(M) with
X′ ⊇ X and Y ′ ⊇ Y . This result has played an
important role in two 2002 papers of Geelen and
Whittle, and of Geelen, Gerards, and Whittle which
attack what are currently the two central problems
in matroid theory:

(i) Rota’s 1971 conjecture that for all finite fields
F, the set of excluded minors for representability
over F is finite; and
(ii) the conjecture that for all finite fields F,
every infinite sequence of matroids repre-
sentable over F contains two matroids, one of
which is a minor of another. This conjecture is
inspired by Robertson and Seymour’s Theorem 6
above.

Further Contributions to Graph Theory
Space prevents our thoroughly explaining Tutte’s
many other contributions to graph theory. Here we
summarize some of these other results.

Factors of Graphs
While he was working on his thesis, Tutte also
studied the problem of characterizing all graphs
G that have a subgraph having exactly one edge at
each of the vertices of G . Such a subgraph is called
a 1-factor. Tutte successfully solved this problem
[4, pp. 93–7], thus generalizing J. Petersen’s 1891
result for cubic graphs.

Theorem 10. Given a graph G and a subgraph H
of G , let o(H) be the number of components of H
having an odd number of vertices. Then G has a
1-factor if and only if o(G\X) ≤ |X| for every sub-
set X ⊆ V (G).

In 1952 Tutte generalized the 1-factor theorem
by characterizing for each function f from the 
vertices of graph G to the set of nonnegative 
integers, those graphs G which have a subgraph
whose degree at each vertex v of G is f (v). These
subgraphs are now called “f-factors”.
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Tree Packing
For a given integer k, which graphs G have k edge-
disjoint spanning trees? One obvious condition is
that, given any partition of the vertices into m
cells, each spanning tree must include enough
edges between cells to connect them together; this
minimum number is m− 1. So for k trees there
must be k(m− 1) such edges. In 1961 Tutte [4,
pp. 216–25] and independently and simultaneously
C. St. J. A. Nash-Williams proved that this condi-
tion also suffices. The resulting theory of edge-
disjoint packings of graphs with trees has found
applications in matroid theory, rigidity of frame-
works, electrical circuit theory, and survivability of
networks.
Chromatic Polynomials and the Golden Number
During the decade 1879–1890, the Four Color 
Problem was thought to have been settled by A. B.
Kempe (rhymes with “hemp”), using an ingenious
device now called a “Kempe chain”. In 1890
P. J. Heawood found a flaw in Kempe’s proof and
showed that Kempe’s idea proved the five color 
theorem. He extended the work to higher genus 
surfaces. With the problem wide open again, 
G. D. Birkhoff introduced the function P (G;λ)
as a tool for attacking it, and in 1946 he and 
D. C. Lewis published a very long paper that has
formed the basis for much subsequent work.

The Four Color Problem was finally settled by
K. Appel and W. Haken in 1976, using Kempe 
chains and a discharging method developed from
Euler’s polyhedron formula. But the proof is not
fully satisfying, because it relies on the treatment
of more than 10,000,000 cases by a computer. A
later proof by Robertson, Sanders, Seymour, and
Thomas is easier to follow but still relies in an 
essential manner on the use of the computer. 
Thus work on the Four Color Theorem continues
today, with the hope of finding a humanly readable
proof.

Birkhoff’s chromatic polynomials represented a
different approach to the Four Color Theorem.
Sometime around the beginning of 1968, Ruth Bari
gave Tutte a copy of her thesis, which contained
the chromatic polynomials of about 100 planar
graphs. Later, Dick Wick Hall sent his collection of
900 chromatic polynomials of planar graphs to
Tutte. Tutte asked Gerald Berman to use his newly
developed computer program for finding zeros of
polynomials to find the zeros of these functions.
Examining the resulting stack of 11× 15 fanfold
printouts, which was many inches thick, Tutte no-
ticed that almost all of the polynomials had a zero
near 1.618. Moreover, the chromatic polynomials
of the more complicated plane triangulations had
zeros closely approximating 2.618. Recognizing
that this number is approximately 1 plus the golden
mean τ = (1+√5 )/2, a zero of x2 − x− 1, he ini-
tiated a study of chromatic polynomials evaluated

at this number. He discovered that |P (T ;τ + 1)|
≤ τ5−k for any 2-connected plane triangulation T
with k vertices [4, pp. 571–8]. In [4, pp. 581–95] he
went further, showing that τ + 1 is never a zero
of a chromatic polynomial of a plane 2-connected
triangulation and that

PT (τ + 2) =
√

5 · τ3(k−3) · P2
T (τ + 1).

To find a number (τ + 2) close to 4 at which chro-
matic polynomials of plane triangulations are pos-
itive was particularly exciting, since the Four Color
Theorem can be stated as “P (G; 4) > 0 for every
plane graph G .”
Enumeration of Graphs
A near-triangulation of the plane is a plane graph
in which every face but one is a triangle. The re-
maining face may or may not be a triangle and, in
Tutte’s research, is taken as the infinite face. A tri-
angulation is strict if it has no separating cycle
with exactly two edges, and a strict triangulation
is simple if it has no separating triangle.

Joining the enumerationists, Tutte said, “It 
occurred to me once that it might be possible 
to get results of interest in the theory of map-
colourings without actually solving the [Four
Colour] Problem. For example, it might be possi-
ble to find the average number of 4-colourings, on
vertices, for planar triangulations of a given size.

“One would determine the number of triangu-
lations of 2n faces, and then the number of 
4-coloured triangulations of 2n faces. Then 
one would divide the second number by the first
to get the required average” [7, p. 114].

To attack this problem, he eliminated all sym-
metry of a plane triangulation or near-triangulation
by rooting the graph. He chose a root vertex v, a root
edge A incident with v , and a root face F incident
with A . He then set up generating functions for 
the numbers of rooted plane triangulations and
related graphs, with the coefficients depending on
the number of vertices in the graph. He found 
recursions satisfied by these functions and solved
the recursions, obtaining some very nice results. 
For example, if an is the number of distinct rooted
triangulations or near-triangulations on 2n
vertices and if

g(x) =
∞∑
n=0

anxn,

then

g(x) = 2
∞∑
n=0

(4n+ 1)!xn

(n+ 1)! (3n+ 2)!
.

Similarly, Tutte found that the number of rooted
2-connected plane cubic graphs with 2n vertices is

pn =
2n(3n)!

(n+ 1)! (2n+ 1)!
.
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Moreover, he found that the average number of
Hamiltonian cycles in a rooted 2-connected plane
cubic graph is

3(2n)! [(2n+ 2)!]2

2n+2[(n+ 1)!]2(n+ 2)! (3n)!
∼ 8

√
3√
πn

(
32
27

)n
.

Turning to colorings, he said [7, p. 125], “I now
knew the number of general rooted triangulations
with 2n faces. Why not also find the number of 
λ-colored ones, for an arbitrary positive integer λ?”
Letting N denote a general rooted plane near-
triangulation, he considered

f (z, λ) =
∑
N
zr (N)P (N;λ),

where r (N) is the number of nonroot triangular
faces of N. He found a differential equation satis-
fied by a related function H in a variable t = z2. He
said [7, pp. 127–8], “The coefficients of successive
powers of t in H can be calculated from this 
equation. I am tempted to say that the problem of
finding the number of 4-coloured rooted triangu-
lations with 2n faces is now solved; it is the 
appropriate coefficient in the power series H
defined as that solution of [the differential equa-
tion] in which the coefficients of t0 and t1 are 
zero. But we still need an asymptotic approxima-
tion. For that we can perhaps now look to the 
theory of differential equations.”

What we have said here only touches the surface
of his work in this area, represented by more than
twenty-five papers written over a period of more
than thirty years.
Reconstruction
Let G be an unlabelled graph without loops and with
at least three vertices. For each vertex v of G we
make a card showing G− v, formed by erasing v
and every edge incident with v . Given only the 
resulting deck of |V (G)| cards, can we reconstruct
G? For example, if G is a path of length two, then
two of the three cards show two vertices joined by
an edge, and the third card shows two isolated
vertices. Since each edge appears in all but two of
the cards (and so exactly once in this deck of three
cards), we conclude that there are two edges, and
the vertex removed to form the third card meets 
both edges. Hence G is a path. In 1941 P. J. Kelly 
and S. M. Ulam conjectured that any loopless graph
with at least three vertices can be reconstructed
from the deck of vertex-deleted subgraphs; this is
known as the Reconstruction Conjecture.

Label the vertices of a graph G with the integers
1, 2, …, n. The adjacency matrix A(G) is an n× n
matrix in which entry (i, j) is 1 if the vertices 
labelled i and j are adjacent and is 0 otherwise. 
For a loopless graph, the main diagonal of A(G) is
all zeros. For such a graph, the characteristic poly-
nomial of G is det(A(G)− λIn), and its spectrum is

the set of zeros, including multiplicities, of the
characteristic polynomial. These are independent
of the labelling of the vertices of G .

Since the Reconstruction Conjecture has proved
to be extremely intractable, the question has arisen,
“Which graph properties are reconstructible?” Even
this problem remained open for the chromatic
polynomial, the chromatic number, the character-
istic polynomial, the spectrum, and the number 
of Hamiltonian cycles of a graph until, in [4,
pp. 528–47] and in a 1979 paper entitled “All the
King’s Horses”, Tutte showed that all five of these
properties are reconstructible by showing that the
Tutte polynomial is reconstructible.

Conclusion
As a result of William Thomas Tutte’s contributions
to graph theory and matroid theory, both subjects
have many results bearing his name. With his
code-breaking efforts, he made what has been
called the “greatest intellectual feat of the whole
war” [1]. Among his many honors, he was awarded
the Tory Medal in 1975, the Killam Prize in 1982,
and the CRM-Fields Prize in 2001. He was elected
a Fellow of the Royal Society of Canada (1958), a
Fellow of the Royal Society of London (1987), and
an Officer of the Order of Canada (2001).
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