MATH 582, FALL 2021 - PROBLEM SET 1

Do five of the six problems below. Due Wednesday, September 15.

1. Let G and H be two tournaments on a vertex set V. Prove that $d_{G}^{+}(v)=d_{H}^{+}(v)$ for all $v \in V$ if and only if G can be turned into H by a sequence of direction-reversals on cycles of length 3. (Hint: Consider the graph formed by the edges with the opposite orientations in G and H.)
2. Use the Matrix Tree Theorem to find the number of spanning trees in the complete bipartite graph $K_{n, n+1}$.
3. Using the Directed Matrix Tree Theorem, find the number of spanning in-trees and out-trees with the root $\mathbf{6}$ in the picture below on the left.
4. Using the Matrix Arborescence Theorem, find in the same (left) picture the number of spanning out-trees with the root 1 in which 1 has out-degree 2 . Find in the right picture the number of spanning out-trees with the root 2 in which 5 has out-degree 2 .

5. Using the BEST Theorem, find the number of Eulerian circuits in the graph in the picture above on the right.
6. Binet-Cauchy Formula. Let $C=A B$, where A is an $n \times m$ matrix and B is an $m \times n$ matrix. Given $S \subseteq[m]$ with $|S|=n$, let A_{S} denote the $n \times n$ submatrix of A whose columns are indexed by S and let B_{S} denote the $n \times n$ submatrix of B whose rows are indexed by S. Prove that $\operatorname{det} C=\sum_{S} \operatorname{det} A_{S} \operatorname{det} B_{S}$, where the summation extends over all n-element subsets of $[m]$. (This completes the proof of the Matrix Tree Theorem.) (Hint: Consider the matrix equation $\left(\begin{array}{cc}I_{m} & 0 \\ A & I_{n}\end{array}\right)\left(\begin{array}{ll}-I_{m} & B \\ A & 0\end{array}\right)=\left(\begin{array}{ll}-I_{m} & B \\ 0 & A B\end{array}\right)$.)
