MATH 582, FALL 2021 - PROBLEM SET 5

Do five of the six problems below. Due Friday, December 3.

1. Use the Győri-Lovász Theorem to prove that for every positive integers k and n with $n \geq 3 k$, every k-connected n-vertex graph
(a) has at least $k(n-2 k+1)$ distinct matchings of size k;
(b) contains k vertex-disjoint paths of length two.
2. Complete the proofs of Lemmas 8.1.65, 8.1.66, and Theorem 8.1.67 in the book.
3. Let T_{1}, T_{2}, and T_{3} be the three directed trees formed by the internal edges in a Schnyder labeling of a triangulation G. Let D be the digraph obtained by deleting from G the external edges and reversing the edges of T_{1}. Prove that D has no directed cycles.
4. a) Prove that every tree has a $(1,2 / 3)$-separation.
b) Prove that every outerplanar graph has a $(2,2 / 3)$-separation.
c) Prove that each grid with n vertices has a \sqrt{n}-separator with $\alpha=1 / 2$.
5. For each of the 3 subgraphs of the Petersen Graph P below, determine whether it is planar or not:
(a) G_{0}, obtained from P by deleting two edges sharing a vertex;
(b) G_{1}, obtained from P by deleting two edges at distance 1 ;
(c) G_{2}, obtained from P by deleting two edges at distance 2 .
"Determine" means you need to prove your answers. Just answers do not count.
6. A normal plane map is a connected plane multigraph in which all vertex and face degrees are at least 3 . Prove that every normal plane map has an edge with the sum of the degrees of the ends at most 13. Give an example that this is sharp. (Hint: Reduce the problem to triangulations and use discharging but beware that you can add an edge $x y$ only if $d(x)+d(y) \geq 12$.)
