Lecture notes

We count graphs with a labeled set of vertices, usually, \([n]\).

Ex. There are \(2^3 = 8\) distinct graphs on \([3]\), and 3 of these graphs are trees.

Here is a slight extension of the famous Cayley’s Formula (proved by Borchardt in 1860).

Theorem 1 (Th. 6.1.18 in the book). For all \(1 \leq k \leq n\), the number \(b_{n,k}\) of forests of rooted trees with vertex set \([n]\) that have \(k\) components and a given set of \(k\) roots is \(kn^{n-k-1}\). In particular, there are \(n^{n-2}\) trees with vertex set \(n\).

Proof. Induction on \(n\). If \(n = 1\) or \(n = k\), then \(b_{n,k} = 1\).

Suppose \(n > k \geq 1\) and the theorem holds for all smaller \(n' \geq k'\). Consider an \(n\)-vertex \(k\)-component forest \(F\) with the set \(K\) of \(k\) roots and the set \(R\) of the neighbors of these roots. By deleting \(K\) from \(F\), we get an \((n-k)\)-vertex \(r\)-component forest \(F'\) with with the set \(R\) of \(r\) roots. By definition, the number of such forests with the set of roots \(R\) is \(b_{n-k,r}\). Each such \(F'\) can be extended to an \(n\)-vertex \(k\)-component forest \(F\) with the set \(K\) of roots in \(k\) ways. So by induction,

\[
b_{n,k} = \sum_{r=1}^{n-k} \binom{n-k}{r} k^r b_{n-k,r} = \sum_{r=1}^{n-k} \binom{n-k}{r} k^r (n-k)^{n-k-r-1}
\]

\[
= k \sum_{r=1}^{n-k} \binom{n-k-1}{r-1} k^{r-1} (n-k)^{n-k-1-(r-1)} = k(k+n-k)^{n-k-1}. \quad \Box
\]

Among ways to code a graph are adjacency and incidence matrices. For labeled trees, there are nicer and shorter ways to code. Consider the following procedure for a tree \(T\) with vertex set \(\{1, \ldots, n\}\):

Prüfer algorithm. Let \(T_0 = T\). For \(i = 1, \ldots, n-1\),
(a) let \(b_i\) be the smallest leaf in \(T_{i-1}\),
(b) denote by \(a_i\) the neighbor of \(b_i\) in \(T_{i-1}\), and
(c) let \(T_i = T_{i-1} - b_i\).

The **Prüfer code** of \(T\) is the vector \((a_1, \ldots, a_{n-2})\).

EXAMPLE.

Properties of Prüfer algorithm

(P1) \(a_{n-1} = n\).

(P2) Any vertex of degree \(s\) in \(T\) appears in \((a_1, \ldots, a_{n-2})\) exactly \(s - 1\) times.

(P3) \(b_i = \min \{k : k \notin \{b_1, \ldots, b_{i-1}\} \cup \{a_i, a_{i+1}, \ldots, a_{n-2}\}\}\) for each \(i\).

Proofs. (P1) follows from the fact that we always have a leaf distinct from \(n\).

(P2) follows from the facts that at the moment some \(k\) appears in \((a_1, \ldots, a_{n-2})\), its degree decreases by 1 and for \(s \geq 3\) the neighbors of leaves in \(s\)-vertex trees are not leaves.

(P3) follows from the algorithm and (P2). \(\Box\)

Theorem 2 (Prüfer, 1918). Every vector \((a_1, \ldots, a_{n-2})\) with \(a_i \in \{1, \ldots, n\}\) for each \(i\) is the Prüfer code of exactly one labeled \(n\)-vertex tree.
Lemma 5 (Binet-Cauchy Formula). Let \(A = (a_{ij})_{i,j=1}^n \) be an \(n \times n \) matrix, \(B = (b_{ji}) \) be an \(m \times m \) matrix, \(C = AB \). For \(S \subset [m] \) with \(|S| = n \), let \(A_S \) (respectively, \(B_S \)) denote the \(n \times n \) submatrix of \(A \) (respectively, of \(B \)) formed by the columns (respectively, rows) indexed by \(S \). Then
\[
\det A = \sum_{S \subset [m]: |S| = n} \det A_S \det B_S.
\]

This is a HOMEWORK PROBLEM.

Proof of Matrix Tree Theorem. (1) Let \(D \) be any orientation of \(G \) and \(M \) be its incidence matrix. Then \(Q = MM^T \).

(2) Let \(B \) be any \((n-1) \times (n-1) \) submatrix of \(M \). Then \(\det B = 0 \) if the corresponding \(n-1 \) edges in \(G \) form a subgraph with a cycle. Otherwise, \(\det B \in \{-1, 1\} \).

Let \(M^* \) be obtained from \(M \) by deleting row \(n \). Then \(Q^* = M^*(M^*)^T \).

(3) Calculate \(\det Q^* \) by Lemma 5: every term is 0 or 1, and 1 if the edges in \(S \) form a tree.
A branching or out-tree is an orientation of a tree that directs all edges from a given vertex (a root).

An arborescence is a digraph whose every component is a branching. An in-tree is a reversed branching.

For a digraph G with incidence matrix A, let D^+ (resp. D^-) be the diagonal matrix of in-degrees (resp. out-degrees), $Q^+ = D^+ - A^T$ and $Q^- = D^- - A^T$.

Examples.

Theorem 6 (Directed Matrix Tree Theorem, Tutte, 1948, Th. 6.1.28 in the book). The number of spanning out-trees (in-trees) of G rooted at v_i is the value of the cofactor for any entry in ith row of Q^- (ith column of Q^+).

Examples.

Instead of Theorem 6, we will prove a much more general theorem:

Theorem 7 (Matrix Arborescence Theorem, Chaiken–Kleitman, 1978, Th. 6.1.30 in the book). For real a_{ij}, variables x_1, \ldots, x_n and an arborescence A on $\{v_1, \ldots, v_n\}$, let $w_A = \prod_{v_iv_j \in E(A)} a_{ij}x_j$. For $S \subseteq [n]$, let $T(S)$ be the set of all arborescences on $\{v_1, \ldots, v_n\}$ whose set of roots is $\{v_i : i \in S\}$. Define $Q = (q_{ij})_{i,j=1}^n$ as follows:

$$q_{ij} = \begin{cases} -a_{ij}x_j, & i \neq j; \\ \sum_{\ell \neq i} a_{i\ell}x_\ell, & i = j. \end{cases}$$

If Q_S is obtained from Q by deleting all rows and columns indexed by S, then

$$\det Q_S = \sum_{A \in T(S)} w_A.$$

Observation. Theorem 6 is obtained from Theorem 7 by letting a_{ij} be the number of edges from v_j to v_i, letting all $x_j = 1$ and S be a singleton.

EXAMPLES.

Proof of Theorem 7. By induction on $m = n - s$, where $s = |S|$. If $n = s$, then we get $1 = 1$. Suppose the theorem holds for $n - s \leq m - 1$. Consider any choice of $S \subseteq [n]$ with $|S| = s$ and any a_{ij}'s. We view $\det Q_S$ as a polynomial of degree m, $f_S(x_1, \ldots, x_n)$. For $i \in S$, call x_i a root variable.

Two claims:

(1) In both, $\sum_{A \in T(S)} w_A$ and $f_S(x_1, \ldots, x_n)$ each term has degree 0 in some non-root variable

(2) For each non-root variable x_i, the terms in which x_i is missing coincide in $\sum_{A \in T(S)} w_A$ and $f_S(x_1, \ldots, x_n)$.

Together, the claims imply the theorem, so let us prove them.

Proof of (1). Since $k < n$, in w_A there are non-root vertices. The outdegree of a non-root leaf v_i is 0, and hence x_i is not present.
Consider $\det Q_S$. Recall that the sum of columns of Q is the zero vector by definition. When we delete rows and columns corresponding to S, this is not true because in the diagonal elements some terms with x_j for $j \in S$ may remain. But when we set all these variables to 0, the property recovers. So $f_S |_{x_j=0, j \in S} = 0$. This means each term of Q_S contains x_j for some $j \in S$. Since the degree of each term is m, some of the m non-root variables is missing. □

Proof of (2). Consider the terms with no non-root x_t in both polynomials. In $\sum_{A \in T(S)} w_A$ they arise from the arborescences where x_t is a leaf. Each such arborescence A is obtained from an arborescence A' with $n - 1$ vertices by adding an arc to v_t. So if T' is the set of all arborescences on $V(G) - v_t$, then the sum of terms omitting x_t is

$$
\left(\sum_{A' \in T'(S)} w_{A'} \right) \left(\sum_{j \neq t} a_{t,j} \cdot x_j \right).
$$

In f_S the terms omitting x_t form $f_S(x_1, \ldots, x_{t-1}, 0, x_{t+1}, \ldots, x_n)$. The only non-zero entry in the ts column of this determinant is $\sum_{j \neq t} a_{t,j} x_j$ in row t. Expand the determinant w.r.t. this column: By the IH, the remaining determinant equals $\left(\sum_{A' \in T'(S)} w_{A'} \right)$. □

Together, the claims prove the theorem. □

AN EXAMPLE.

Eulerian circuits versus trees in digraphs

Lemma 8 (Lem. 6.1.33 in the book). For each Eulerian circuit in a digraph G that begins from vertex v along edge e, the set T of edges last leaving each vertex apart from v forms an in-tree with root v.

Proof. The outdegree in T of each vertex apart from v is 1, the outdegree of v is 0, and there are no directed cycles. □

Algorithm.

Input. An Eulerian digraph D and a spanning in-tree T.

Step 1. For each $u \in V(D)$, give an order of exiting edges s.t. (*) for each $u \neq v$, the edge of T is the last.

Step 2. Starting from v always go along the non-used edges smallest in the order.

Lemma 9 (Lem. 6.1.35 in the book). The algorithm above always produces an Eulerian circuit in D.

Proof. We check that by (*) the our trail L can stop only at v. Hence L uses all edges entering v. Then for each in-neighbor w of v, L also uses all edges entering w. Continuing, we conclude that L uses all edges at each vertex. □

Theorem 10 (BEST Theorem, de Bruijn–van Aardenne-Ehrenfest, 1951, Smith–Tutte, 1941, Th. 6.1.36 in the book). Let D be an Eulerian digraph with $V(D) = \{v_1, \ldots, v_n\}$,
where $d^+(v_i) = d^-(v_i) = d_i$ for all $1 \leq i \leq n$. Let $M = M_j$ be the number of spanning in-trees in D with root v_j. Then the number of Eulerian circuits in D is

$$M \prod_{i=1}^{n} (d_i - 1)!.$$

Proof. For each in-tree, the algorithm produces $\prod_{i=1}^{n} (d_i - 1)!$ distinct Eulerian circuits, and by Lemma 8, each Eulerian circuit is obtained this way. □

Corollary 11. In each Eulerian digraph, the number of spanning in-trees with root v_i is equal for all v_i (and equal to the number of spanning out-trees with root v_i).

Corollary 12. In each Eulerian digraph, the number of Eulerian circuits can be computed in polynomial time.

Note that for undirected graphs it is NP-complete to calculate the number of Eulerian circuits.

------------------- Here Lecture 4 ended.-------------------