A model of reconstructing a whole object from its parts is *Graph reconstruction*. For a graph G, a *card* or vds is a subgraph $G - v$ for some $v \in V(G)$. The *deck* is the set of all cards of a graph. A graph is *reconstructible* if no other graph has the same deck.

Examples: A graph with 2 vertices and a graph with 5 vertices.

Reconstruction Conjecture: Every graph with at least 3 vertices is reconstructible. Proved for narrow classes.

A graph parameter is *reconstructible* if it can be computed from the deck when $n > 2$.

A class \mathcal{G} of graphs is *recognizable* if the property of membership in \mathcal{G} is reconstructible.

Examples. A *copy of Q* in G is a subgraph of G isomorphic to Q.

Proof. $s_Q(G) = \sum_{v \in V(G)} \frac{s_Q(G - v)}{n - |Q|}$, $s_Q(G, v) = s_Q(G) - s_Q(G - v)$. □

Corollary: Regular graphs are reconstructible.

Theorem 2.2 (Kelly, 1957, Th. 6.3.13 in the book). *Disconnected graphs with at least 3 vertices are reconstructible.*

Proof. First we show that the class of disconnected graphs is recognizable. For this, observe that a graph G is connected iff at least two of its vds are connected.

Now, if some card of a disconnected graph is connected, then this vertex is isolated and we see the rest of the graph in the card. If none of the cards is connected, choose a largest component over all cards, say M. Fix any subgraph L of M with $|V(L)| = |M| - 1$. Among the cards with the fewest copies of M, choose one with the most copies of L-components. Then we know all. □

A more complicated theorem is about reconstruction of trees. We need some notions and claims.

Recall that each tree has one or two adjacent centers. The *branches* of a bicentral tree are the component obtained by deleting the central edges. The branches of an unicentral tree T with center c are the components of $T - c$ with the added c adjacent to its neighbor in T in this component. They are *rooted trees* with the root in the center.

Examples.
When \(\Delta(G) > 2 \), \(\alpha(v) \) denotes the distance from \(v \) to the closest vertex of degree at least 3. A peripheral vertex is a vertex with largest eccentricity. An arm in a tree is a branch containing a peripheral vertex.

Lemma 2.3. Let \(n \geq 3 \).

(a) Trees, paths and trees of diameter \(d \) are recognizable.

(b) For a tree \(T \), the set \(\{ \alpha(v) \}_{v \in V(T)} \) is reconstructible.

Proof. Each tree is a connected graph with \(n - 1 \) edges. A path is a tree with max degree 2. If a tree is not a path, then we see the longest path in a card. This proves (a).

For (b), if \(T \) is a path, then \(\alpha(v) \) is not defined for all \(v \). Suppose not. For every vertex of degree at least 3, we know this, and this means \(\alpha(v) = 0 \). Suppose \(d(v) = 2 \).

Let \(Y_k \) be tree with \(k + 3 \) vertices obtained from the path with \(k + 2 \) vertices by duplicating one leaf. For each \(k < n - 3 \) and each \(v \) we know \(s_{Y_k}(T, v) \). The least \(k \) such that \(s_{Y_k}(T, v) > 0 \) (if exists) is \(\alpha(v) \). If such \(k \) does not exist, then since \(T \) is not a path, \(\alpha(v) = n - 3 \). \(\Box \)

Theorem 2.4 (Kelly, 1957, Th. 6.3.19 in the book.). Trees with at least 3 vertices are reconstructible.

Proof. Let a deck \(D \) be given. By Lemma 2.3(a), we may assume that \(G \) is a tree distinct from the path. And we know its diameter. Since peripheral vertices are those that belong to a path of length \(diam(G) \) and have degree 1, we know the cards of peripheral vertices. Let \(\mathcal{P} \) be this set of cards.

Call a tree special if it has exactly two branches, and one is a path. If \(G - v \in \mathcal{P} \), then the arm containing \(v \) is a path iff \(\alpha(v) \geq \frac{diam(G)}{2} \). If in addition \(G \) is special, then \(\alpha(v) > \frac{diam(G)}{2} \).

Thus

\[
G \text{ is special } \iff \mathcal{P} \text{ has } G - v \text{ with } \alpha(v) > \frac{diam(G)}{2}.
\]

So we can recognize whether \(G \) is special. If yes, then reconstruct \(G \) from \(G - v \in \mathcal{P} \) by appending \(v \) to any path arm of \(G - v \). So, suppose not.

Let \(\mathcal{Q} = \{ G - v : diam(G - v) = diam(G) \text{ and } d(v) = 1 \} \). We now show that

\[
(2) \quad \forall \text{ arm } A \text{ there is a leaf } w \notin A \text{ s.t. } G - w \in \mathcal{Q}.
\]

Indeed, if for each leaf \(w \notin A \), \(diam(G - w) < diam(G) \), then only one leaf is not in \(A \); thus \(G \) is special.

Let \(A \) be a largest arm. By (2) some \(G - w \in \mathcal{Q} \) contains \(A \). Preserving diameter preserves the center. So, \(A \) is an arm in \(G - w \). Thus from \(\mathcal{Q} \) we see all largest arms of \(G \).

Case 1: \(A \) is a path arm. Then each arm in cards in \(\mathcal{Q} \) is a path arm. Take a connected card with the fewest path arms and append \(v \) to a slightly shorter branch that is a path.

Case 2: \(A \) is not a path. Then there is a leaf \(u \in A \) s.t. \(G - u \in \mathcal{Q} \). Let \(L = A - u \). Then \(L \) is an arm in \(G - u \), so in a card \(C \in \mathcal{Q} \) with the fewest arms isomorphic \(A \) and most cards isomorphic \(L \) we replace one \(L \) with \(A \). \(\Box \)

Theorem 2.5 (Tutte, 1976, Th. 6.3.21 in the book.). For \(n \geq 3 \) and a graph \(G \) with \(n \) vertices, the parameters below are reconstructible.

(A) \(s_Q \) if \(Q \) is a spanning disconnected subgraph with \(\delta(Q) \geq 1 \).
(B) For \(k \geq 2 \), the number of spanning connected subgraphs of \(G \) whose blocks are \(B_1, \ldots, B_k \).

(C) The number of 2-connected spanning subgraphs of \(G \) with \(m \) edges.

Note: we do not see these subgraphs in the cards.

Proof of (A). Suppose \(Q_1, \ldots, Q_k \) are the components of \(Q \).
For a graph \(H \), define \(b_Q(H) = \# \) of ways to express \(H \) as the union of \(Q_1, \ldots, Q_k \).

Example: \(Q_1 = K_3, Q_2 = P_3, Q_3 = K_2, H_1 = K_4 - e, H_2 = K_4 \). Then \(b_Q(H_1) = 2(5 + 4) = 18 \) and \(b_Q(H_2) = 12 \).

Important equality is:

\[
\prod_{i=1}^{k} s_{Q_i}(G) = \sum_{\delta(H) \geq 1} b_Q(H)s_H(G).
\]

Given any \(H \), we know \(b_Q(H) \). If \(|V(H)| \leq n - 1 \), then we know \(s_H(G) \). So, from (3) we know \(s_Q(G) \).

Proof of (B). Suppose \(B = \{ B_1, \ldots, B_k \} \) is the list of blocks, and \(n_i = |V(B_i)| \). Each connected graph with blocks \(B_1, \ldots, B_k \) has \(\sum_{i=1}^{k} n_i - k + 1 \) vertices.

For a graph \(H \), define \(b_B(H) = \# \) of ways to express \(H \) as the union of \(B_1, \ldots, B_k \). Again (3) with \(B \) in place of \(Q \) holds. We know: (a) \(b_B(H) \) for all \(H \), (b) \(s_H(G) \) when \(|V(H)| < n \) or \(H \) is disconnected.

Let \(S \) be the class of connected spanning subgraphs of \(G \) whose blocks are \(B_1, \ldots, B_k \). So, unknown are the values of \(s_H(G) \) when \(H \in S \). We do not find each of them, but want to find \(\sum_{H \in S} s_H(G) \). We know that for all such \(H, b_B(H) \) is the same: it is 1 when all \(B_i \) are distinct, and otherwise it is \((m_1!) \ldots (m_j!) \) when they form \(j \) isomorphism classes.

Proof of (C). There are \(\binom{|E(G)|}{m} \) subgraphs of \(G \) with \(m \) edges. By Kelley’s Lemma we know the number of them with isolated vertices. By (A), we know the number of other disconnected subgraphs with \(m \) edges. By (B), we know the number of connected subgraphs with \(m \) edges and with cut vertices. \(\square \)

Corollary. The number of hamiltonian cycles and the number of spanning trees in a graph are reconstructible.

Bollobás result on 3 cards.

Edge-reconstruction, examples with 3 edges.

Edge-Reconstruction Conjecture (Harary, 1964): Every graph with more than 3 edges is edge-reconstructible. ——————————– Here Lecture 14 ended.

Lemma 2.6 (Edge-Kelly Lemma). Let \(m \geq 4 \). If \(|E(G)| = m > |E(Q)| \), then \(s_Q(G) \) is reconstructible.