2. Lecture notes: Reconstruction

A model of reconstructing a whole object from its parts is Graph reconstruction.
For a graph G, a card or $v d s$ is a subgraph $G-v$ for some $v \in V(G)$. The deck is the set of all cards of a graph. A graph is reconstructible if no other graph has the same deck.

Examples: A graph with 2 vertices and a graph with 5 vertices.
Reconstruction Conjecture: Every graph with at least 3 vertices is reconstructible.
Proved for narrow classes.
A graph parameter is reconstructible if it can be computed from the deck when $n>2$.
A class \mathcal{G} of graphs is recognizable if the property of membership in \mathcal{G} is reconstructible.
Examples.
A copy of Q in G is a subgraph of G isomorphic to Q.
Examples.
Let $s_{Q}(G)=$ be $\#$ of copies of Q in G,
$s_{Q}^{*}(G)=$ be \# of induced copies of Q in G,
$s_{Q}(G, v)=$ be $\#$ of copies of Q in G containing v,
$s_{Q}^{*}(G, v)=$ be \# of induced copies of Q in G containing v.
Theorem 2.1 (Kelly's Lemma, Kelly, 1957, Lem. 6.3.6 in the book). If $n>2, v \in V(G)$ and $|V(Q)|<\mid V(G)$, then all of $s_{Q}(G), s_{Q}^{*}(G), s_{Q}(G, v)$ and $s_{Q}^{*}(G, v)$ are reconstructible. In particular, the degrees sequence and the number of edges are reconstructible.

Proof. $s_{Q}(G)=\frac{\sum_{v \in V(G)} s_{Q}(G-v)}{n-|Q|}, s_{Q}(G, v)=s_{Q}(G)-s_{Q}(G-v)$.
Corollary: Regular graphs are reconstructible.

Theorem 2.2 (Kelly, 1957, Th. 6.3.13 in the book). Disconnected graphs with at least 3 vertices are reconstructible.

Proof. First we show that the class of disconnected graphs is recognizable. For this, observe that a graph G is connected iff at least two of its vds are connected.

Now, if some card of a disconnected graph is connected, then this vertex is isolated and we see the rest of the graph in the card. If none of the cards is connected, choose a largest component over all cards, say M. Fix any subgraph L of M with $|V(L)|=|M|-1$. Among the cards with the fewest copies of M, choose one with the most copies of L-components. Then we know all.

A more complicated theorem is about reconstruction of trees. We need some notions and claims.

Here Lecture 12 ended.

Recall that each tree has one or two adjacent centers. The branches of a bicentral tree are the component obtained by deleting the central edges. The branches of an unicentral tree T with center c are the components of $T-c$ with the added c adjacent to its neighbor in T in this component. They are rooted trees with the root in the center.

Examples.

When $\Delta(G)>2, \alpha(v)$ denotes the distance from v to the closest vertex of degree at least 3. A peripheral vertex is a vertex with largest eccentricity. An arm in a tree is a branch containing a peripheral vertex.

Lemma 2.3. Let $n \geq 3$.
(a) Trees, paths and trees of diameter d are recognizable.
(b) For a tree T, the set $\{\alpha(v)\}_{v \in V(T)}$ is reconstructible.

Proof. Each tree is a connected graph with $n-1$ edges. A path is a tree with max degree 2. If a tree is not a path, then we see the longest path in a card. This proves (a).

For (b), if T is a path, then $\alpha(v)$ is not defined for all v. Suppose not. For every vertex of degree at least 3, we know this, and this means $\alpha(v)=0$. Suppose $d(v)=2$.

Let Y_{k} be tree with $k+3$ vertices obtained from the path with $k+2$ vertices by duplicating one leaf. For each $k<n-3$ and each v we know $s_{Y_{k}}(T, v)$. The least k such that $s_{Y_{k}}(T, v)>0$ (if exists) is $\alpha(v)$. If such k does not exist, then since T is not a path, $\alpha(v)=n-3$.

Theorem 2.4 (Kelly, 1957, Th. 6.3.19 in the book.). Trees with at least 3 vertices are reconstructible.

Proof. Let a deck \mathcal{D} be given. By Lemma 2.3(a), we may assume that G is a tree distinct from the path. And we know its diameter. Since peripheral vertices are those that belong to a path of length $\operatorname{diam}(G)$ and have degree 1, we know the cards of peripheral vertices. Let \mathcal{P} be this set of cards.

Call a tree special if it has exactly two branches, and one is a path. If $G-v \in \mathcal{P}$, then the arm containing v is a path iff $\alpha(v) \geq \frac{\operatorname{diam}(G)}{2}$. If in addition G is special, then $\alpha(v)>\frac{\operatorname{diam}(G)}{2}$. Thus

$$
\begin{equation*}
G \text { is special } \Leftrightarrow \mathcal{P} \text { has } G-v \text { with } \alpha(v)>\frac{\operatorname{diam}(G)}{2} . \tag{1}
\end{equation*}
$$

So we can recognize whether G is special. If yes, then reconstruct G from $G-v \in \mathcal{P}$ by appending v to any path arm of $G-v$. So, suppose not.

Let $\mathcal{Q}=\{G-v: \operatorname{diam}(G-v)=\operatorname{diam}(G)$ and $d(v)=1\}$. We now show that
\forall arm A there is a leaf $w \notin A$ s.t. $G-w \in \mathcal{Q}$.
Indeed, if for each leaf $w \notin A$, $\operatorname{diam}(G-w)<\operatorname{diam}(G)$, then only one leaf is not in A; thus G is special.

Let A be a largest arm. By (2) some $G-w \in \mathcal{Q}$ contains A. Preserving diameter preserves the center. So, A is an arm in $G-w$. Thus from \mathcal{Q} we see all largest arms of G.

Case 1: A is a path arm. Then each arm in cards in \mathcal{Q} is a path arm. Take a connected card with the fewest path arms and append v to a slightly shorter branch that is a path.

Case 2: A is not a path. Then there is a leaf $u \in A$ s.t. $G-u \in \mathcal{Q}$. Let $L=A-u$. Then L is an arm in $G-u$, so in a card $C \in \mathcal{Q}$ with the fewest arms isomorphic A and most cards isomorphic L we replace one L with A.

Here Lecture 13 ended.

Theorem 2.5 (Tutte, 1976, Th. 6.3.21 in the book.). For $n \geq 3$ a graph G with n vertices, the parameters below are reconstructible.
(A) s_{Q} if Q is a spanning disconnected subgraph with $\left.\delta(Q)\right) \geq 1$.
(B) For $k \geq 2$, the number of spanning connected subgraphs of G whose blocks are B_{1}, \ldots, B_{k}.
(C) The number of 2-connected spanning subgraphs of G with m edges.

Note: we do not see these subgraphs in the cards.
Proof of (A). Suppose Q_{1}, \ldots, Q_{k} are the components of Q.
For a graph H, define $b_{Q}(H)=\#$ of ways to express H as the union of Q_{1}, \ldots, Q_{k}.
Example: $Q_{1}=K_{3}, Q_{2}=P_{3}, Q_{3}=K_{2}, H_{1}=K_{4}-e, H_{2}=K_{4}$. Then $b_{Q}\left(H_{1}\right)=$ $2(5+4)=18$ and $b_{Q}\left(H_{2}\right)=12$.

Important equality is:

$$
\begin{equation*}
\prod_{i=1}^{k} s_{Q_{i}}(G)=\sum_{H \subseteq G, \delta(H) \geq 1} b_{Q}(H) s_{H}(G) . \tag{3}
\end{equation*}
$$

Given any H, we know $b_{Q}(H)$. If $|V(H)| \leq n-1$, then we know $s_{H}(G)$. So, from (3) we know $s_{Q}(G)$.

Proof of (B). Suppose $\mathbf{B}=\left\{B_{1}, \ldots, B_{k}\right\}$ is the list of blocks, and $n_{i}=\left|V\left(B_{i}\right)\right|$. Each connected graph with blocks B_{1}, \ldots, B_{k} has $\sum_{i=1}^{k} n_{i}-k+1$ vertices.

For a graph H, define $b_{\mathbf{B}}(H)=\#$ of ways to express H as the union of B_{1}, \ldots, B_{k}. Again (3) with B in place of Q holds. We know: (a) $b_{\mathbf{B}}(H)$ for all H, (b) $s_{H}(G)$ when $|V(H)|<n$ or H is disconnected.

Let S be the class of connected spanning subgraphs of G whose blocks are B_{1}, \ldots, B_{k}. So, unknown are the values of $s_{H}(G)$ when $H \in S$. We do not find each of them, but want to find $\sum_{H \in S} s_{H}(G)$. We know that for all such $H, b_{\mathbf{B}}(H)$ is the same: it is 1 when all B_{i} are distinct, and otherwise it is $\left(m_{1}!\right) \ldots\left(m_{j}!\right)$ when they form j isomorphism classes.

Proof of (C). There are $\binom{|E(G)|}{m}$ subgraphs of G with m edges. By Kelley's Lemma we know the number of them with isolated vertices. By (A), we know the number of other disconnected subgraphs with m edges. By (B), we know the number of connected subgraphs with m edges and with cut vertices.

Corollary. The number of hamiltonian cycles and the number of spanning trees in a graph are reconstructible.

Bollobás result on 3 cards.
Edge-reconstruction, examples with 3 edges.
Edge-Reconstruction Conjecture (Harary, 1964): Every graph with more than 3 edges is edge-reconstructible.

Here Lecture 14 ended.

Lemma 2.6 (Edge-Kelly Lemma). Let $m \geq 4$. If $|E(G)|=m>|E(Q)|$, then $s_{Q}(G)$ is reconstructible.

Proof. The same as for Kelly Lemma.

Let $s_{Q}^{\prime}(G)$ be \# of injections $f: V(Q) \rightarrow V(G)$ s.t. edges of Q go to edges of G.
Then $s_{Q}^{\prime}(G)=a(Q) \cdot s_{Q}(G)$, where $a(Q)$ is the number of automorphisms of Q.

Theorem 2.7 (Lovász, 1972), Th. 6.3.31 in the book). Let G be an n-vertex graph with m edges. If $m>\frac{1}{2}\binom{n}{2}$, then G is edge-reconstructible.

Proof. We look at n-vertex graphs. For a graph Q, let $\mathcal{Q}(Q)$ be the set of all $2^{|E(Q)|}$ spanning subgraphs of Q. By inclusion-exclusion, for each G,

$$
\begin{equation*}
s_{Q}^{\prime}(\bar{G})=\sum_{F \in \mathcal{Q}(Q)}(-1)^{|E(F)|} s_{F}^{\prime}(G) . \tag{4}
\end{equation*}
$$

Suppose n-vertex m-edge graph G_{1} has the same edge deck as G. By (4),

$$
\begin{equation*}
s_{G_{1}}^{\prime}(\bar{G})=\sum_{F \in \mathcal{Q}\left(G_{1}\right)}(-1)^{|E(F)|} s_{F}^{\prime}(G) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{G}^{\prime}(\bar{G})=\sum_{F \in \mathcal{Q}(G)}(-1)^{|E(F)|} s_{F}^{\prime}(G) \tag{6}
\end{equation*}
$$

The terms in RHSs of (5) and (6) containing F distinct from G_{1} and G are the same. Also, both LHSs are zeros, since $|E(G)|>|E(\bar{G})|$. So $s_{G_{1}}^{\prime}(G)=s_{G}^{\prime}(G)>0$, which means $G_{1}=G_{2}$.

For a spanning subgraph R of Q, let $s_{R: Q}^{\prime}(G)$ denote the number of injections $f: V(Q) \rightarrow$ $V(G)$ s.t. the edges in R map into edges of G and the edges in $Q-E(R)$ map into non-edges of G.

Theorem 2.8 (Nash-Williams, 1976), Th. 6.3 .33 in the book). If a graph G with at least 4 edges has a spanning subgraph R satisfying one of the properties below, then G is edgereconstructible.

1) $s_{R: G}^{\prime}(H)=s_{R: G}^{\prime}(G)$ for all H with the same edge deck as G.
2) $|E(G)|-|E(R)|$ is even and $s_{R: G}^{\prime}(G)=0$.

Corollary 2.9 (Müller, 1977), Cor. 6.3 .34 in the book). Every graph G with $n \geq 4$ vertices and at least $1+\log _{2}(n!)$ edges is edge-reconstructible.

Proof of Corollary 2.9 modulo Th. 2.8. Let $m=|E(G)| \geq 1+\log _{2}(n!)$. G has 2^{m-1} spanning subgraphs R s.t. $m-|E(R)|$ is even.

There are $n!$ injections $V(G) \rightarrow V(G)$; they preserve at most $n!$ sets R. If $2^{m-1}>n!$, then some R is never preserves, that is, $s_{R: G}^{\prime}(G)=0$. Apply part 2) of Th. 2.8.

Here Lecture 15 ended.

Proof of Th. 2.8. For a spanning subgraph R of G, let $\mathcal{Q}=\mathcal{Q}(R)$ be the set of spanning subgraphs of G containing R.

For every graph $F, s_{R}^{\prime}(F)=\sum_{P \in \mathcal{Q}} s_{P: G}^{\prime}(F)$. So, by Inclusion-Exclusion,

$$
\begin{equation*}
s_{R: G}^{\prime}(F)=\sum_{P \in \mathcal{Q}}(-1)^{|E(P)|-|E(R)|} s_{P}^{\prime}(F) . \tag{7}
\end{equation*}
$$

Let G^{\prime} have the same edge deck as G. Consider $s_{R: G}^{\prime}(G)$ and $s_{R: G}^{\prime}\left(G^{\prime}\right)$. By edge-Kelly Lemma, almost all terms in RHS of (7) coincide, so

$$
\begin{equation*}
s_{R: G}^{\prime}(G)-s_{R: G}^{\prime}\left(G^{\prime}\right)=(-1)_{4}^{|E(G)|-|E(R)|}\left(s_{G}^{\prime}(G)-s_{G}^{\prime}\left(G^{\prime}\right)\right) . \tag{8}
\end{equation*}
$$

So if condition 1) of the theorem holds, then the LHS of (8) is 0 .
If $s_{R: G}^{\prime}(G)=0$, then LHS ≤ 0. So if in addition $|E(G)|-|E(R)|$ is even, then $s_{G}^{\prime}\left(G^{\prime}\right) \geq$ $s_{G}^{\prime}(G)>0$.

3. Connectivity

3.1. New min-max theorems. Definitions and examples. Recollecting Menger Theorems, Expansion Lemma.

An r-branching in a digraph is an out-tree rooted at r.
Let $\kappa^{\prime}(r, G)$ be the minimum \# of edges whose deletion makes some $v \in V(G)$ unreachable from r.

For $X \subset V(G)$, let $F(X)=\#$ of edges entering X. So

$$
\kappa^{\prime}(r, G)=\min \{F(X): X \neq \emptyset, r \notin X\} .
$$

Let $b(r, G)=\max \#$ of edge-disjoint r-branchings in G.
Theorem 3.1 (Edmonds, 1973, Th. 7.1.37 in the book). For each digraph G and each $r \in V(G), b(r, G)=\kappa^{\prime}(r, G)$.

Proof. Let $k=\kappa^{\prime}(r, G)$. The fact $b(r, G) \leq k$ is evident. We prove $b(r, G) \geq k$ by induction on k. The case $k=1$ is clear.

Here Lecture 16 ended.

For the induction step, we will find an r-branching T s.t. $\kappa^{\prime}(r, G-E(T)) \geq k-1$.
Claim 1: For all $U, W \subseteq V(G), F(U)+F(W) \geq F(U \cup W)+F(U \cap W)$. Proof in class.
A partial r-branching (p.b. for short) is an out-tree with root r. A p.b. is good if $\kappa^{\prime}(r, G-E(B)) \geq k-1$.

A p. b. with one edge is good. Let B be a largest good p.b. If for every $W \subset V(G)$ s.t. (a) $r \notin B$ and (b) $W \nsubseteq B$ we have $F_{G-E(B)}(W) \geq k$, then adding any edge from $V(B)$ to $V(G)-V(B)$ we get a good p.b. contradicting the choice of B.

So, choose a minimum $U \subset V(G)$ satisfying (a) and (b) s.t. $F_{G-E(B)}(U)=k-1$. Since no edges entering $U-V(B)$ were deleted, $F_{G-E(B)}(U-V(B)) \geq k$.

Draw a picture !!
But $F_{G-E(B)}(U)=k-1$. So there is $x y \in E(G)$ s.t. $x \in V(B) \cap U$ and $y \in U-V(B)$. Let $B^{\prime}=B+x y$. By the maximality of $B, \kappa^{\prime}\left(r, G-E\left(B^{\prime}\right)\right) \leq k-2$. This means there is $W \subseteq V-r$ s.t.

$$
F_{G-E\left(B^{\prime}\right)}(W) \leq k-2 .
$$

This in turn means $F_{G-E(B)}(W)=k-1$ and $x y$ enters W, i.e. $x \notin W$ and $y \in W$. In particular, $U \cap W \neq U$. By Claim 1,

$$
F_{G-E(B)}(W \cap U)+F_{G-E(B)}(W \cup U) \leq F_{G-E(B)}(W)+F_{G-E(B)}(U)=2(k-1) .
$$

It follows that $F_{G-E(B)}(W \cap U)=F_{G-E(B)}(W \cup U)=k-1$. This contradicts the choice of U.

Corollary 3.2 (Cor. 7.1.38 in the book). For each digraph G and any $r \in V(G)$, TFAE:
(A) G has k pairwise edge-disjoint r-branchings.
(B) $\kappa^{\prime}(r, G) \geq k$.
(C) For each $s \in V(G)-r, \exists k$ pairwise edge-disjoint r, s-paths.
(D) The underlying undirected H has k pairwise edge-disjoint spanning trees whose union G^{\prime} is s.t. each vertex apart from r is entered by exactly k edges.

Proof. (A) \Rightarrow (C) Evident. $\quad(\mathrm{C}) \Rightarrow(\mathrm{B})$ All r, s-paths should be broken.
$(\mathrm{B}) \Rightarrow(\mathrm{A})$ Theorem 3.1. $\quad(\mathrm{A}) \Rightarrow(\mathrm{D})$ Evident.
$(\mathrm{D}) \Rightarrow(\mathrm{B})$ Let $U \subseteq V-r$. Each spanning tree has at most $|U|-1$ edges inside U, so $\left|E_{G^{\prime}}(U)\right| \leq k(|U|-1)$. But althogher there are $k|U|$ edges entering the vertices in U.

Theorem 3.3 (Seymour, 1977, Th. 7.1.39 in the book). Theorem 3.1 implies the edge local directed version of Menger's Theorem.

Proof. Let $x, y \in V(G)$ and $k=\kappa^{\prime}(x, y)$. By the definition of k, for each $U \subseteq V(G)-x$ with $y \in U, F_{G}(U) \geq k$.

Let G^{\prime} be obtained from G by adding k edges $y z$ for each $z \in V(G)-x-y$. Then $F_{G^{\prime}}(U) \geq k$ for each U not containing x. So by Theorem 3.1, G^{\prime} has k edge-disjoint x branchings. Each of them contains an x, y-path, and this path is contained in G.

Here Lecture 17 ended.

A dicut in a digraph G is an ordered partition $[S, \bar{S}]$ of $V(G)$, s.t. G has no edges from \bar{S} to S.

By definition, a digraph is strongly connected iff it has no dicuts.
If the underlying undirected graph \underline{G} is connected, then each dicut $[S, \bar{S}]$ has edge(s) from S to \bar{S}. Such edges we will call the edges of $[S, \bar{S}]$.

If we add to G a set L of directed edges s.t. for each dicut $[S, \bar{S}], L$ contains an edge from \bar{S} to S, then $G+L$ is strongly connected. Certainly, for a digraph G with the underlying undirected graph \underline{G} connected, the number of edges in such L must be at least the maximum number $m(G)$ of pairwise disjoint dicuts in G. We will prove a theorem by Lucchesi and Younger that one can find such L of size $m(G)$ with the property that each edge in L is a reversed edge from G. It was a conjecture by Younger and Robertson.

For the proof, we need a technical lemma by Lovász.
Lemma 3.4 (Lovász, 1976), Lem. 7.1.46 in the book). Let G be a digraph with at most k pairwise disjoint dicuts. If D_{1}, \ldots, D_{ℓ} are dicuts that together cover each edge of G at most twice, then $\ell \leq 2 k$.

Note that the same dicut may appear twice among D_{1}, \ldots, D_{ℓ}.
Theorem 3.5 (Lucchesi and Younger, 1978, Th. 7.1.47 in the book). For a digraph G with the underlying undirected graph \underline{G} connected, the minimum number of edges in a set covering all dicuts equals the maximum number $m(G)$ of pairwise disjoint dicuts in G.

Proof modulo Lemma 3.4. By induction on $m(G)$. If $m(G)=0$, the claim is trivial. Suppose the theorem holds for all G^{\prime} with $m\left(G^{\prime}\right) \leq k-1$. Let G be any digraph with $m(G)=k$.

Definitions of subdivisions and contractions: $G \oplus e$ and G / e.
Let $D=(S, \bar{S})$ be a dicut in a set of k pairwise disjoint dicuts in G. We subdivide edges of D one by one until subdividing any other edges from D would increase the number of
pairwise disjoint dicuts. Suppose the resulting digraph is H, and e is an edge in D s.t. $H \oplus e$ has $k+1$ disjoint dicuts, say D_{1}, \ldots, D_{k+1}. We can consider those as dicuts in H such that D_{1} and D_{2} share e, but in each other pair of dicuts the dicuts are disjoint.

Consider $H^{\prime}=H / e$. If H^{\prime} has only $k-1$ disjoint dicuts, then G / e also has at most $k-1$ disjoint dicuts, hence by induction has a set S of $k-1$ edges covering all dicuts in G / e. But then S covers all dicuts in G that do not contain e. Thus $S+e$ covers all dicuts in G, a contradiction.

Hence H^{\prime} has k disjoint dicuts, say C_{1}, \ldots, C_{k}. Those are disjoint dicuts in H not containing e. Then $\left\{C_{1}, \ldots, C_{k}, D_{1}, \ldots, D_{k+1}\right\}$ is a set of $2 k+1$ dicuts in H contradicting Lemma 3.4.

For the proof of Lemma 3.4, we will need some notation.
Sets A and B in a universe U are crossing if all of $A \cap B, A-B, B-A$ and $\overline{A \cup B}$ are non-empty. A family of sets is laminar if no two members are crossing.

Proof of Lemma 3.4. Let $k \geq 1$. Suppose a digraph G with at most k pairwise disjoint dicuts has dicuts $D_{1}, \ldots, D_{2 k+1}$ that together cover each edge of G at most twice. Let $D_{i}=\left(S_{i}, \bar{S}_{i}\right)$ for $1 \leq i \leq 2 k+1$.

Choose such a set with the maximum $\sum_{i=1}^{2 k+1}\left|S_{i}\right|^{2}$. We claim that

$$
\begin{equation*}
\text { the family } \mathcal{S}=\left\{S_{1}, \ldots, S_{2 k+1}\right\} \text { is laminar. } \tag{9}
\end{equation*}
$$

Indeed, if S_{1} and S_{2} cross, replace D_{1} and D_{2} with pairs $D_{1}^{\prime}=\left(S_{1} \cap S_{2}, \overline{S_{1} \cap S_{2}}\right)$ and $D_{2}^{\prime}=\left(S_{1} \cup S_{2}, \overline{S_{1} \cup S_{2}}\right)$. We check (using pictures!) that (a) D_{1}^{\prime} are D_{2}^{\prime} are dicuts, (b) each edge of is covered at most twice by $D_{1}^{\prime}, D_{2}^{\prime}, D_{3}, \ldots, D_{2 k+1}$, and (c) $\left|S_{1} \cap S_{2}\right|^{2}+\left|S_{1} \cup S_{2}\right|^{2}>\left|S_{1}\right|^{2}+\left|S_{2}\right|^{2}$. This proves (9).

Here Lecture 18 ended.

Lecture 19 was by Prof. West on graph reconstruction.
Consider the auxiliary graph H with $V(H)=U=\left\{D_{1}, \ldots, D_{2 k+1}\right\}$, and $D_{i} D_{j} \in E(H)$ iff D_{i} and D_{j} share an edge. By the definition of $k, \alpha(H) \leq k$. We will prove that

$$
\begin{equation*}
H \text { is bipartite. } \tag{10}
\end{equation*}
$$

That would imply $|V(H)| \leq 2 \alpha(H) \leq 2 k$, a contradiction.
So suppose $C=D_{1}, \ldots, D_{m}, D_{1}$ is an odd cycle in H. If some D_{i} appears twice in C, then the edges of D_{i} do not belong to other D_{j} s, a contradiction. So, all D_{1}, \ldots, D_{m} are distinct, hence all S_{1}, \ldots, S_{m} are distinct.

Since $D_{i} \cap D_{i+1} \neq \emptyset, S_{i} \cap S_{i+1} \neq \emptyset$ and $\bar{S}_{i} \cap \bar{S}_{i+1} \neq \emptyset$. Since $\left\{S_{i}, S_{i+1}\right\}$ is non-crossing,

$$
\begin{equation*}
\text { either } S_{i} \subset S_{i+1} \text { or } S_{i} \supset S_{i+1} . \tag{11}
\end{equation*}
$$

Since m is odd, the condition cannot alternate all the time. So, we may assume

$$
\begin{equation*}
S_{m} \subset S_{1} \subset S_{2} \tag{12}
\end{equation*}
$$

Let j be the largest index s.t. S_{1} contains neither S_{j} nor \bar{S}_{j}. By (12), j is well defined and $j \leq m-1$.

By $(9),\left(^{*}\right)$ either $S_{1} \subset S_{j}$ or $S_{1} \subset \overline{S_{j}}$. Let $e=x y \in D_{j} \cap D_{j+1}$.
Pictures!!
Rewriting (${ }^{*}$), we have
(a) Either $S_{1} \subset S_{j}$ or $S_{1} \cap S_{j}=\emptyset$. Similarly,
(b) either $S_{1} \supset S_{j+1}$ or $S_{1} \cup S_{j+1}=U$, and
(c) both $S_{j} \cap S_{j+1} \neq \emptyset$ and $S_{j} \cup S_{j+1} \neq U$.

By (11), we have two cases. (and watch how e goes).
Case 1: $S_{j} \subset S_{j+1}$. By (a) we have two subcases.
Case 1.1: $S_{1} \subset S_{j}$. (Picture!) Then $S_{1} \not \supset S_{j+1}$, so by (b), $S_{1} \supset \bar{S}_{j+1}$. But S_{1} does not contain y.

Case 1.2: $S_{1} \subset \bar{S}_{j}$. (Picture!) Again, $S_{1} \not \supset S_{j+1}$, so by (b), $S_{1} \supset \bar{S}_{j+1}$. But S_{1} does not contain x.

Case 2: $S_{j} \supset S_{j+1}$. By (a) we have two subcases.
Case 2.1: $S_{1} \subset S_{j}$. (Picture!) Then $S_{1} \not \supset \bar{S}_{j+1}$, since $y \notin S_{j} \supset S_{1}$. So by (b), $S_{1} \supset S_{j+1}$. But then $e \in D_{j} \cap D_{j+1} \cap D_{1}$.

Case 2.2: $S_{1} \subset \bar{S}_{j}$. (Picture!) Then $S_{1} \not \supset S_{j+1}$ and $S_{1} \not \supset \bar{S}_{j+1}$, contradicting (b).
3.2. On k-linked graphs. A graph G with at least $2 k$ vertices is k-linked, if for any distinct $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \in V(G)$, there are k disjoint paths P_{1}, \ldots, P_{k} s.t. $\forall i, P_{i}$ is an a_{i}, b_{i}-path. An example of a 5 -connected but not 2 -linked graph.
Jung: each non-planar 4 -connected graph is 2-linked. So, each 6-connected graph is 2linked.

For each fixed k, there is an $O\left(n^{3}\right)$-algorithm checking whether an n-vertex G is k-linked. For general k - NP-hard.

Before continuing of k-linked graphs, we digress on subdivisions. Recall the definition! Also, F-subdivisions.

Here Lecture 20 ended.

Theorem 3.6 (Mader, Thomassen, Th. 7.1.53 in the book). Let F have m edges and no isolated vertices. If a graph G has at least $|V(F)|$ vertices and $\delta(G) \geq 2^{m-1}$, then G contains an F-subdivision.

We will use the lemma below:
Lemma 3.7 (Mader, Thomassen, Lem. 7.1.52 in the book). If $\delta(G) \geq 2 k$, then G contains vertex disjoint subgraphs G^{\prime} and H s.t. (1) $\delta\left(G^{\prime}\right) \geq k$, (2) each $v \in V\left(G^{\prime}\right)$ has a neighbor in H and (3) H is connected.

Proof of Theorem 3.6 modulo Lemma 3.7. By induction on m. Check for $m=1,2$. Suppose $m \geq 3$ and the theorem is proved for $m-1$.

If there is $x y \in E(F)$ with $d(x)=d(y)=1$, then $F^{\prime}=F-x-y$. In this case, choose any edge $u v \in E(G)$ and let $G^{\prime}=G-u-v$.

Otherwise, let G^{\prime} and H satisfy Lemma 3.7, and define F^{\prime} as follows. If there is $x y \in E(F)$ with $d(x) \geq 2$ and $d(y)=1$, then let $F^{\prime}=F-y$. Otherwise $\delta(F) \geq 2$. Take any $x y \in E(F)$ and let $F^{\prime}=F-x y$.

We claim that G^{\prime} satisfies conditions for F^{\prime}. Indeed, if $d(x)=d(y)=1$, then $\delta\left(G^{\prime}\right) \geq$ $\delta(G)-2 \geq 2^{m-1}-2 \geq 2^{m-2}$. Also in this case $\left|V\left(G^{\prime}\right)\right|=|V(G)|-2 \geq|V(F)|-2$.

In other cases, $\delta\left(G^{\prime}\right) \geq 2^{m-2}$ by Lemma 3.7. So $\left|V\left(G^{\prime}\right)\right| \geq 1+2^{m-2}$. If this is less than $\left|V\left(F^{\prime}\right)\right|$, then, since $2^{x} \geq 2 x$ for $x \geq 1,\left|V\left(F^{\prime}\right)\right| \geq 2 m$. This is possible only if F^{\prime} is a matching. But then G^{\prime} would be obtained by deleting two vertices, a contradiction.

Proof of Lemma 3.7. May assume G is connected. For a connected $H \subset G$, let $G \odot H$ be the graph obtained from G by contracting all vertices of H into one. Let H be a maximum subgraph of G s.t. $|E(G \odot H)| \geq k \cdot|V(G \odot H)|$.

Each 1-vertex subgraph H is okay. Let $V^{\prime}(H)$ be the set of neighbors of $V(H)$ in $G-H$. Let $G^{\prime}=G\left[V^{\prime}\right]$. If $d_{G^{\prime}}(v) \leq k-1$ for some $v \in V^{\prime}$, then contracting x to H makes at most k edges disappear, contradicting maximality of H. So, $\delta\left(G^{\prime}\right) \geq k$.

Let $h(k):=$ smallest $\delta(G)$ that implies a subdivision of K_{k} in G. Clearly, $h(1)=0$, $h(2)=1, h(3)=2$. Dirac proved that $h(4)=3$.

Here Lecture 21 ended.

We know that $h(5)=6$. In general, $k^{2} / 8 \leq h(k) \leq c k^{2}$
Hajós conjectured that each graph with chromatic number k is contains a subdivision of K_{k}.

Theorem 3.8 (Jung, Larman-Many, Th. 7.1.55 in the book). There is a function $f(k)$ s.t. each $f(k)$-connected graph is k-linked.

Proof. We know $f(1)=1$. Will show that $f(k) \leq h(3 k)$. By Theorem 3.6, $h(3 k) \leq 2^{\binom{3 k}{2}}$.
Let G be a $h(3 k)$-connected graph. Let H be a subdivision of $K_{3 k}$ contained in G with the set Y of branching vertices. Let $X=\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}\right\}$. Applying Menger's Theorem, we find $2 k$ fully disjoint X, Y-paths with no Y-vertices in the interior.

Among such sets of paths, choose one with the minimum number of edges outside H. Let P_{i} be the path connecting a_{i} with some $c_{i} \in Y$ and let Q_{i} be the path connecting b_{i} with some $d_{i} \in Y$. Let $Y-\left\{c_{1}, \ldots, c_{k}, d_{1}, \ldots, d_{k}\right\}=\left\{y_{1}, \ldots, y_{k}\right\}$.

Let C_{i} (resp., D_{i}) be the path in H connecting y_{i} with c_{i} (resp., d_{i}). Then our paths will be subpaths of walks $a_{i} P_{i} C_{i} D_{i} Q_{i} b_{i}$ for $i \in[k]$. To show that we can choose these paths disjoint we use the choice of our paths (pictures!!).

Linear bounds on $f(k)$. The record is $f(k) \leq 10 k$.
For a graph H, a graph G is H-linked, if for any injection $g: V(H) \rightarrow V(G)$ for each edge $u v \in E(H), G$ has an $g(u), g(v)$-path $P_{u v}$ s.t. all such paths are internally disjoint.

If M_{k} denotes a matching with k edges, then k-linked means M_{k}-linked. The $K_{1, s}$-linked graphs are exactly s-connected graphs.

Theorem 3.9 (Mader, Th. 7.1.59 in the book). Each graph G with average degree greater than $4 k-4$ has a k-connected subgraph.

Here Lecture 22 ended.

Proof. For $k \leq 2$, check in class. Let $k \geq 3$.
We prove first another thing: If

$$
\begin{equation*}
k \geq 3, n \geq 2 k-1, V(G) \mid=n, \text { and }|E(G)|>(2 k-3)(n-k+1) \tag{13}
\end{equation*}
$$

then G has a k-connected subgraph.
Let G be a smallest counterexample: it satisfies (13), but has no k-connected subgraphs. If $n=2 k-1$, then

$$
|E(G)|>(n-2)\left(n-\frac{n+1}{{\underset{9}{9}}_{2}^{n}}+1\right)=\frac{n(n-1)}{2}-1 .
$$

Thus in this case $G=K_{2 k-1}$.
Suppose now, $n \geq 2 k$. Then by minimality, $\delta(G) \geq 2 k-2$. We will show that G is k-connected itself. Indeed, suppose G has a sep. set S with $|S|=k-1$. Let U_{1} be the vertex set of a component of $G-S$ and $U_{2}=V(G)-S-U_{1}$. For $i=1,2$, let $G_{i}=G\left[S \cup U_{i}\right]$ and $n_{i}=\left|V\left(G_{i}\right)\right|$.

Since $\delta(G) \geq 2 k-2, n_{i} \geq 2 k-1$, so by the minimality of $G,\left|E\left(G_{i}\right)\right| \leq(2 k-3)\left(n_{i}-k+1\right)$, so

$$
e(H) \leq(2 k-3)\left(n_{1}-k+1+n_{2}-k+1=(2 k-3)(n-k+1)\right.
$$

contradicting (13). This proves the claim above.
Now we will simply show that each graph G with average degree $a>4(k-1)$ satisfies (13). Indeed, let $a=4(k-1)+\epsilon$. Suppose

$$
(4 k-4+\epsilon) \frac{n}{2} \leq(2 k-3)(n-k+1) .
$$

This simply cannot happen.

Conjecture (Mader, 1972). For each fixed k for sufficiently large n, every n-vertex graph G with $|E(G)|>(1.5 k-2)(n-k+1)$ contains a k-connected subgraph.

Mader proved the conjecture for $k \leq 6$. He also proved the bound with $1+1 / \sqrt{2}$ in place of 1.5. Yuster in 2003 proved that if $k \geq 2$ and $n \geq 9 k / 4$, then each n-vertex graph G with $|E(G)| \geq \frac{193}{120} k(n-k)$ contains a $(k+1)$-connected subgraph. Bernshteyn and A.K. improved $\frac{193}{120}$ to $\frac{19}{12}$ for $n \geq 5 k / 2$.

Here Lecture 23 ended.

3.3. Constructive characterizations of 3 -connected graphs. Minimally k-connected graphs. .

Recall characterization of 2-connected graphs using ear decomposition (see the book). It is constructive.

A vertex k-split makes H from G by replacing a vertex x with adjacent x_{1} and x_{2} s.t.
(a) $N_{H}\left(x_{1}\right) \cup N_{H}\left(x_{2}\right)=N_{G}(x) \cup\left\{x_{1}, x_{2}\right\}$, and
(b) $d_{H}\left(x_{i}\right) \geq k$ for $i=1,2$.

If x_{1} and x_{2} have no common neighbors, then it is a disjoint k-split.
Lemma 3.10. If G is k-connected and H is a k-split of G, then H is k-connected.
Proof. Denote $X=\left\{x_{1}, x_{2}\right\}$. Suppose H has a separating set S with $|S|=k-1$. Then $S \cap X \neq \emptyset$. Also, if $X \subseteq S$, then $(S-X) \cup\{x\}$ is a separating set in G. Thus we may assume $S \cap X=\left\{x_{1}\right\}$.

Let $T=\left(S-x_{1}\right) \cup\{x\}$. Since $|T|=k-1, G-T$ is connected. This means $H-S-x_{2}$ is connected. But out of k neighbors of x_{2} at least one is not in S.

An edge e in a k-connected G is k-contractible if G / e is k-connected.
Lemma 3.11 (Contraction Lemma, Tutte, 1961, Lem. 7.2.7 in the book). Every 3-connected graph $\neq K_{4}$ has a 3-contractible edge.

Proof. If $x y$ is not contractible, then there is z s.t. $G^{\prime}=G-\{x, y, z\}$ is disconnected. Choose x, y, z to maximize the order of the largest component, say H, of $G-\{x, y, z\}$. Let H^{\prime} be another component of G^{\prime}. Since G is 3 -connected, each of x, y, x has a neighbor in H^{\prime}. Let u be a neighbor of z in H^{\prime}.

If $u z$ is contractible, we win. Otherwise, there is a $v \in V(G)$ s.t. $G^{\prime \prime}=G-\{v, u, z\}$ is disconnected. If $v \in V(H)$, then it is a cut vertex in $F=G[V(H) \cup\{x, y\}$. Since $v \notin\{x, y\}$ and does not separate x from y, it separates $\{x, y\}$ from $N(z)$ in F. But then $\{v, z\}$ is separating in G !

Thus $v \notin V(H)$. Then a component of $G-\{v, u, z\}$ contains $V(H)$ plus a vertex in $\{x, y\}$, a contradiction.

The lemma does not hold for k-connected graphs when $k \geq 4$.
Note that each contraction a 3 -contractible edge is the inverse of a 3 -split. This implies:
Theorem 3.12. A graph is 3-connected iff it can be obtained from K_{4} by a sequence of 3-splits.

Proof. By Lemma 3.10, each graph obtained from K_{4} by a sequence of 3 -splits. The other direction is by induction and Lemma 3.11.

A k-connected graph G is minimally k-connected if $G-e$ is not k-connected for any $e \in E(G)$.

Examples.
We will prove the next theorem later, but use soon for another characterization of 3connected graphs.

Theorem 3.13 (Mader). Let $k \geq 2$. Every cycle in a minimally k-connected graph contains a vertex of degree k.

Here Lecture 24 ended.

Lemma 3.14 (Lem. 7.2.13 in the book). If G is a k-connected graph and $u v \in E(G)$, then
(a) $G-u v$ is k-connected iff it has no u, v-cut of size $k-1$;
(b) $G / u v$ is k-connected iff $G-u-v$ is $(k-1)$-connected.

Proof. For both (a) and (b) one direction is trivial, the other is proved in class.

Lemma 3.15 (Lem. 7.2 .14 in the book). Let G be a 3-connected graph with $|V(G)| \geq 5$. Suppose $z \in V(G)$ with $d(z)=3$. Let $t=|E(G[N(z)])|$.
(a) If $t=3$ and $u, v \in N(z)$, then $G-u v$ is 3 -connected.
(b) If $t \leq 1$, then for some edge $z w \in E(G)$ not in a triangle, $G / w z$ is 3-connected.

Proof. We will think that $N(z)=\{u, v, w\}$.
To prove (a), by Lemma 3.14(a), it is enough to find 3 int.-disjoint u, v-paths. Let w be third neighbor of z and $y \in V(G)-\{z, u, v, w\}$. The 2-connected graph $G-w$ has a $y,\{u, v\}$-fan of size 2 . The edges of this fan form a u, v-path P avoiding w and z. So, two other u, v-paths can be u, z, v and u, w, v.

To prove (b), in view of Lemma 3.14(b), we will prove that $G-z-w$ is 2 -connected. For this, in turn, we will show that

$$
\begin{equation*}
G-z-w \text { contains a cycle } C \text { through } u \text { and } v . \tag{14}
\end{equation*}
$$

Indeed, if (14) holds and $G-z-w$ has a cut vertex x, then there is a component X of $G-w-z-x$ containing neither u nor v. But then X is also a component of $G-w-x$ containing none of u, v and z, a contradiction.

So, we aim at (14). Let $y \in V(G)-\{z, u, v, w\}$. If $u v \in E(G)$, consider a $y, N(z)$-fan of size 3. The paths to u and v in this fan together with edge $u v$ create C. Now we may assume $N(z)$ is independent.

Let y be the neighbor of u on the segment P of C from u to v. Let $V^{\prime}=V(P)-u-v$. Consider a $y,\left(V(C)-V^{\prime}\right)$-fan F of size 3 in G. Since $N(z) \subset V(C)-V^{\prime}, z \notin F$. Let $x \in F \cap(V(C)-V(P))$. We find a cycle through exactly two vertices of $N(z)$ that also goes through x. (Pictures in class.)

Lemma 3.16. Let G be a graph, $z \in V(G), N(z)=\{u, v, w\}$, $v u, v w \in E(G)$, and $u w \notin$ $E(G)$. Then G is 3 -connected iff $H:=G-z+u v$ is 3 -connected.

Proof. (\Rightarrow) Suppose H is not 3-connected. If $|V(H)|=3$, then $H=K_{3}$, and so $G=K_{4}-e$ not 3 -connected. Otherwise, H has a separating $X \subset V(H)$ with $|X|=2$. Since $\{u, v, w\}-X$ is in one component of $H-X, X$ is also separating in G.
(\Leftarrow) Suppose G is not 3-connected. If $|V(G)| \leq 4$, then $|V(H)| \leq 3$. Suppose $|V(G)| \geq 5$ and let X be a separating set in G with $|X|=2$. If $X \neq\{z, v\}$, then $\{z, u, v, w\}-X$ is in one component of $G-X$, and so X is also separating in H. Suppose $X=\{z, v\}$ and the size of the component of $G-X$ containing u is not larger than that containing w. Then $\{v, w\}$ is separating in H.

Here Lecture 25 ended.

Lecture 26 was by Bob Krueger.

Theorem 3.17. A graph G is 3 -connected iff G can be obtained from a wheel by a sequence of adding edges and disjoint 3-splits.

Proof. (\Leftarrow) Immediate by Lemma 3.10.
(\Rightarrow) We will show that each minimally 3 -connected non-wheel G has a contractible edge not in a triangle. Use induction on n. Case $n=4$ is okay. Let G be a minimum counter-example and $n=|V(G)|$. By Theorem 3.13, G has a vertex z with $d(z)=3$. If $G[N(z)]=K_{3}$, by Lemma 3.15(a), G is not minimally 3 -connected. If $\mid E(G[N(z)] \mid \leq 1$, then by Lemma 3.15(b), G has a contractible edge not in a triangle.

So, suppose $N(z)=\{u, v, w\}$, $v u, v w \in E(G)$, and $u w \notin E(G)$. Let $H=G-z+u v$. By Lemma 3.16, H is 3 -connected.

Claim: H is minimally 3-connected.
Indeed, suppose $H-e$ is 3 -connected. If $e \notin\{u v, v w, u w\}$, then by Lemma 3.16, $G-e$ is also 3-connected, a contradiction.

Suppose now $e=v u$. Since $G-v u$ is not 3 -connected, by Lemma 3.14(a), $G-v u$ has a v, u-separating set S with $|S|=2$. We need $z \in S$. Then $S-z+w$ is v, u-separating in H, as claimed. This also proves that
$\left.{ }^{*}\right) \kappa(G-z)=2$.
The case $e=v w$ is the same. Finally, suppose $e=u w$. Then $H-e=G-z$ and we are done by $(*)$. This proves the claim.

By the claim and IH, either
(A) H is wheel, or
(B) H has an $x y \in E(H)$ s.t. $x y$ is not in a triangle and is 3 -contractible.

If (A) holds, then we know G : it is obtained from a wheel by deleting an edge and adding a vertex of degree 3, see pictures in class. In both cases we are done. So suppose (B) holds. Since v, u, w, v is a 3 -cycle in $H, x y \notin\{v u, v w, u w\}$. Since $H / x y$ is 3 -connected, by Lemma 3.16, $G / x y$ is 3 -connected, as claimed.

Theorem 3.18 (Mader). Let $k \geq 2$. Every minimally k-connected MULTIgraph contains a vertex of degree k.

Proof. Let G be a minimally k-connected multigraph. Choose a minimum $X \subset V(G)$ s.t. $\left|E_{G}(X, \bar{X})\right|=k$. Suppose there is $x y \in E(G)$ with $x, y \in X$. Then there is $Z \subset V(G)$ s.t. $Z \cap\{x, y\}=\{x\}$ and

$$
\left|E_{G}(Z, \bar{Z})\right|-1=\left|E_{G-x y}(Z, \bar{Z})\right|=k-1
$$

Among x, y, choose x so that $X \cup Z \neq V(G)$. Then by submodularity, $\left|E_{G}(X \cap Z, \overline{X \cap Z})\right|=$ k. Since $y \notin Z,|X \cap Z|<|X|$, a contradiction.

Thus X is independent, so $|X|=1$.

Lemma 3.19 (Mader). Let $k \geq 2$ and let G be a minimally- k-connected graph. Let $a \in V(G)$ with $d(a) \geq k+1$. Let ax, ay $\in E(G)$. Let S be a separating $(k-1)$-set in $G-a x$ and T be a separating $(k-1)$-set in $G-a y$. Then the component of $G-T-a y$ containing y has fewer vertices than the component of $G-S-a x$ containing a.

Here Lecture 27 ended.

Proof of Theorem 3.13 modulo Lemma 3.19. Suppose that all vertices of a cycle $a_{1}, \ldots, a_{\ell}, a_{1}$ in a minimally- k-connected graph G have degree $\geq k+1$. Let S_{i} be a separating $(k-1)$-set in $G-a_{i-1} a_{i}\left(a_{\ell}=a_{0}\right)$. Let A_{i} be the vertex set of the component of $G-a_{i-1} a_{i}-S_{i}$.

By Lemma 3.19 with $a=a_{i}, S=S_{i}$ and $T=S_{i+1}, \quad\left|A_{i}\right|>\left|A_{i+1}\right|$ for each i, a contradiction.

Corollary 3.20 (Bollobás). Every minimally-k-connected graph with n vertices $h a s \geq \frac{(k-1) n+2}{2 k-1}$ vertices of degree k.

Proof. Let $S=\{v \in V(G): d(v)=k\}$. Then

$$
\begin{equation*}
2|E(G)| \geq k n+(n-|S|) \tag{15}
\end{equation*}
$$

By Theorem 3.13, $G-S$ is a forest; so $|E(G-S)| \leq n-|S|-1$. Thus, using (15),

$$
\frac{1}{2}(k n+n-|S|) \leq n-|S|+1+k|S|
$$

Solving the inequality for $|S|$, we get the answer.

Proof of Lemma 3.19. Each of $G-S-a x$ and $G-T-a y$ has exactly two components. Let them be A_{X} and X (with $a \in A_{X}$) and A_{Y} and Y (with $a \in A_{Y}$). So $V=A_{X} \cup S \cup X=$
$A_{Y} \cup T \cup Y$. (PICTURES!!). See which parts are adjacent to which. In particular, since $a x, a y \in E(G),\{x, y\} \cap X \cap Y=\emptyset!$

We want: $|Y|<\left|A_{X}\right|$. The following two imply this: (1) $|Y \cap S| \leq\left|A_{X} \cap T\right|$ and (2) $Y \cap X=\emptyset$.

Claim 1: $|Y \cap S| \leq\left|A_{X} \cap T\right|$.
Proof of Claim 1. If $|Y \cap S|>\left|A_{X} \cap T\right|$, then the set $U=(S-Y) \cup\left(A_{X} \cap T\right)$ satisfies $|U|<|S|=k-1$. Since $d(a) \geq k+1$, it has a neighbor not in $U+x+y$. By the picture, $z \in A_{X} \cap A_{Y}$. Then $U+a$ separates z from $X \cup Y$, a contradiction.

Claim 2: $Y \cap X=\emptyset$.
Proof of Claim 2. Let $W=(S \cap Y) \cup\left(T-A_{X}\right)$. By Claim 1, $|W| \leq k-1$. Since $\{x, y\} \cap X \cap Y=\emptyset, W$ separates $X \cap Y$ from the rest.

It is not hard to prove that a multigraph G is 2-edge connected iff it has a strongly connected orientation. (One may use closed-ear decomposition.) Significantly harder is the proof of the following.

Theorem 3.21 (Orientation Theorem, Nash-Williams, 1960, Th. 7.2.29 in the book). For each $s \geq 1$, a multigraph G has an s-edge-connected orientation iff G is $2 s$-edge-connected.

We need some definitions and a lemma.
A multigraph is k-edge-connected relative to a vertex z if each edge-cut apart from maybe ($\{z\}, V-z$) has at least k edges.

Here Lecture 28 ended.

If $z, u, v \in V(G)$ and $u z, v z \in E(G)$, then the u, v-shortcut of z is the graph $G-u z-v z+u v$.
Lemma 3.22 (Shortcut Lemma, Lovász). Let $k \geq 2$ be even and let z be a vertex of even degree in a multigraph G that is k-edge-connected relative to z. Then for each $u \in N(z)$ there is $v \in N(z)$ s.t. the u, v-shortcut of z is also k-edge-connected relative to z.

Proof of Theorem 3.21 modulo Lemma 3.22. (\Rightarrow) Immediate.
(\Leftarrow) Use induction on n - the number of vertices. For $n=2$ - easy. Let G be a counterexample with smallest $n=|V(G)|$ and modulo this, with fewest edges. Then G is minimally $2 s$-edge-connected. By Theorem $3.18, G$ has a vertex z with $d(z)=2 s$. By Lemma 3.22, iteratively find shortcuts of z until in the resulting G^{\prime} the degree of z is 0 . Then $G^{\prime}-z$ is $2 s$-edge-connected. By induction, $G^{\prime}-z$ has an s-edge-connected orientation. Replace each oriented shortcut edge $u v$ with directed path u, z, v. Lifting these edges does not decrease $d^{+}(X)$ for any nonempty X not containing z. Also for any nonempty X not contain$\operatorname{ing} z, d^{+}(X+z)$ after lifting is not less than $d^{+}(X)$ before lifting. Finally, $d^{+}(z)$ will be s.

Proof of Lemma 3.22. Fix $u \in N(z)$. Call $X \subseteq V(G)-z$ dangerous, if
(a) $\emptyset \neq X \neq V(G)-z$;
(b) $F(X) \leq k+1$ and
(c) $u \in X$.

Claim 1: If X, Y are dangerous and $X-Y \neq \emptyset \neq Y-X$, then $F(X \cup Y)$ is odd.
Claim 2: If X, Y are dangerous, then $F(X \cup Y) \leq k+1$.
Claim 3: If $A \supseteq N(z)$ and $F(A) \leq k+1$, then $z \in A$.

Claim 4: If X, Y are dangerous, then $X \cup Y$ does not contain $N(z)$, and hence is dangerous.

Let M be the union of all dangerous sets. If $M=\emptyset$, then we can shortcut any $u v$, even if $u=v$. Let $M \neq \emptyset$. By Claim 4, M is dangerous. By Claim 3, there is $v \in N(z)-M$. Shortcut $u v$. What remains is to prove the claims. We prove them in the reverse order.

Proof of Claim 4: Suppose $X \cup Y \supseteq N(z)$. By Claim 2, $F(X \cup Y) \leq k+1$. So by Claim $3, z \in X \cup Y$, contradicting the fact that $z \notin X$ and $z \notin Y$.

Proof of Claim 3: Since $d(z) \geq 2$, if $A \supseteq N(z), F(A) \leq k+1$ and $z \in A$, then $F(A+z)=$ $F(A)-d(z) \leq(k+1)-2<k$, a contradiction.

Proof of Claim 2: If $X \subseteq Y$ or $Y \subseteq X$, this is trivial. Suppose $X-Y \neq \emptyset \neq Y-X$. By submodularity of F,

$$
F(X \cap Y)+F(X \cup Y) \leq F(X)+F(Y) \leq 2(k+1)
$$

Hence $F(X \cup Y) \leq 2(k+1)-F(X \cap Y) \leq 2 k+2$. So by Claim 1, $F(X \cup Y) \leq k+1$.

- Here Lecture 29 ended.

Proof of Claim 1: Since $u z \in E(X \cap Y, \overline{X \cup Y})$,

$$
2(k+1) \geq F(X)+F(Y)=F(X-Y)+F(Y-X)+2|E(X \cap Y, \overline{X \cup Y})| \geq k+k+2 .
$$

So, we have all equalities here; in particular, $F(X)=F(Y)=k+1$ and $F(X-Y)=$ $F(Y-X)=k$. Since $F(Y)+F(X-Y) \equiv F(X \cup Y)(\bmod 2)$, the claim follows.

Theorem 3.23 (Győri, Lovász, Th. 7.2.23 in the book). An n-vertex graph G is k-connected iff $n \geq k+1$ and for all distinct $v_{1}, \ldots, v_{k} \in V(G)$ and any positive integers n_{1}, \ldots, n_{k} s.t. $n_{1}+\ldots+n_{k}=n$, there is a partition $V(G)=V_{1} \cup \ldots \cup V_{k}$ s.t. for each $1 \leq i \leq k$,
(a) $G\left[V_{i}\right]$ is connected, (b) $v_{i} \in V_{i}$, and (c) $\left|V_{i}\right|=n_{i}$.

