
4. Lecture notes: Planar graphs

4.1. Basics, classic theorems. A polygonal curve is a curve composed of finitely many
line segments.

A drawing of a graph G is a function f : V (G) ∪ E(G)→ R2 s.t.
(a) f(v) ∈ R2 for every v ∈ V (G);
(b) f(v) ̸= f(v′) if v, v′ ∈ V (G) and v ̸= v′;
(c) f(xy) is a polygonal curve connecting f(x) with f(y).
A crossing in a drawing of a graph is a common vertex in the images of two edges that is

not the image of their common end.
A graph G is planar if it has a drawing f without crossings.

A plane graph is a pair (G, f) where f is a drawing of G without crossings.
A face of a plane graph (G, f) is a connected component of R2 − f(V (G) ∪ E(G)).

The length, ℓ(Fi), of a face Fi in a plane graph (G, f) is the total length of the closed
walk(s) bounding Fi.

Restricted Jordan Curve Theorem: A simple closed polygonal curve C in the plane
partitions the plane into exactly two faces each having C as boundary.
By F (G, f) we denote the set of faces of the plane graph (G, f).

Proposition 4.1. For each plane graph (G, f),

(1)
∑

Fi∈F (G,f)

ℓ(Fi) = 2|E(G)|.

Proof. By the definition of ℓ(Fi), each edge either contributes 1 to the length of two
distinct faces or contributes 2 to the length of one face.

Theorem 4.2 (Euler’s Formula). For every connected plane graph (G, f),

|V (G)| − |E(G)|+ |F (G, f)| = 2.

Corollary 4.3. For n ≥ 3, every simple planar n-vertex graph G has at most 3n− 6 edges.
Moreover, if G is triangle-free, then G has at most 2n− 4 edges.

——————————– Here Lecture 30 ended.

Corollary 4.4. Graphs K5 and K3,3 are not planar.

A Kuratowski graph is a subdivision of K5 or K3,3. It follows from Euler’s Formula that
neither K5 nor K3,3 is planar. Thus every Kuratowski graph is nonplanar. Our goal is to
prove the following classic theorem.

Theorem 4.5 (Kuratowski, 1930). A graph G is planar if and only if G does not contain a
Kuratowski subgraph.

The “only if” part is already proved. Let us prove the “if” part.

Claim 4.6. For every graph G and any xy ∈ E(G), if G does not contain a Kuratowski
subgraph, then G/xy also doesn’t.
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Proof. Suppose that G/xy contains a Kuratowski subgraph H. Let z be the vertex
resulting from contracting x with y. If z /∈ V (H), then H is a Kuratowski subgraph of G.
If z ∈ V (H) but is not a branch vertex of H, then we can obtain a Kuratowski subgraph
H ′ of G by replacing z in H with either x, or y, or {x, y}. The same holds if z is a branch
vertex of H, and at most one edge of H incident with z is incident with x in G. Thus the
remaining case is that H is a subdivision of K5 and exactly two edges of H incident with z
are incident with x in G (see Fig. 1 (left)).
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Figure 1

Then G contains a subdivision of K3,3 as in Fig. 1 (right). □

First, we will prove a stronger statement for 3-connected graphs. A convex embedding
of a planar graph G is one in which every edge of G forms a straight segment and every
face (including the outer face) is a convex polygon. Not every planar graph has a convex
embedding; for example, K2,4 has not.

Theorem 4.7 (Tutte). Every 3-connected graph with no Kuratowski subgraph has a convex
embedding in the plane with no three vertices on a line.

Proof. By induction on n := |V (G)|. If n ≤ 4, then the only 3-connected graph is K4,
and K4 has such embedding.

Suppose the theorem holds for all graphs with at most n − 1 vertices. Let G be any
n-vertex 3-connected graph with no Kuratowski subgraph. By Contraction Lemma (7.2.7 in
the book), G has an edge xy such that H := G/xy is 3-connected. By Claim ??, H has no
Kuratowski subgraph. So by the IH, H has a convex embedding in the plane with no three
vertices on a line. Fix such an embedding. Let z be the result of contracting xy and H ′ be
obtained from H by deleting all edges incident with z. Since H ′− z is 2-connected, the face
C of H ′ containing z is a cycle. Let x1, . . . , xk be the neighbors of x on C in cyclic order. If
there is some i such that all neighbors of y on C are in the portion of C between xi and xi+1,
then we can obtain a convex embedding of G with no three vertices on a line by placing x
into the position of z and placing y very close to x. If this does not happen, then either (a)
y and x have 3 common neighbors, say u, v, w, or (b) for some i < j, y has a neighbor v on
C between xi and xj (in clockwise order) and a neighbor u between xj and xi.

In Case (a) we have a K5-subdivision and in Case (b) we have a K3,3-subdivision. □
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In order to prove Theorem ??, it is now enough to show the following.

Lemma 4.8. If G has the fewest vertices among the nonplanar graphs with no Kuratowski
subgraphs, then G is 3-connected.

Proof. We need the following simple observation:
(**) If F is a face in an embedding of a graph G in the plane, then there is an embedding of
G in the plane where F the outer face.

If G is disconnected, then by the minimality of G, each of its components could be embed-
ded in the plane. The union of these embeddings will be an embedding of G. Suppose G has
a cut vertex x and H is a component of G−x. Let H1 = G[V (H)+x] and H2 = G−H. By
the minimality of G, each of H1 and H2 could be embedded in the plane. Then by (**) each
of H1 and H2 has an embedding in the plane such that x is on the outer face. Stretching
each of these embeddings so that each of the graphs is in one half-plane passing through x,
we can then glue them into an embedding of G.

Suppose now that G is 2-connected and that sets V1, V2 ⊂ V (G) and vertices x, y are such
that V1 ∪ V2 = V (G), V1 ∩ V2 = {x, y} and there are no edges between V1 − x − y and
V2− x− y. For i = 1, 2, let Gi be the graph obtained from G[Vi] by adding edge xy. If both
G1 and G2 are planar, then by (**), there are their embeddings with edge xy on the outer
face. Again, we can stretch these embeddings so that we can glue them along xy and get
an embedding of G. Thus we may assume that G1 is not planar. By the minimality of G,
G1 contains a Kuratowski subgraph H. Since G does not contain Kuratowski subgraphs, H
contains edge xy. So we can get a Kuratowski subgraph H ′ of G from H be replacing xy
with an x, y-path in G[V2]. Such an x, y-path exists, since G is 2-connected and so each of x
and y has a neighbor in every component of G− x− y. □

——————————– Here Lecture 31 ended.

Theorem 4.9 (Wagner, 1937). A graph G is planar if and only if G does not contain a
subgraph contractible to K5 or K3,3.

Proof. The difficult part by Kuratowski’s Theorem. □

The cycle space, C(G), of a graph G is the set of characteristic vectors of even subgraphs,
i.e. of edge-disjoint unions of cycles in G.

The bond space, B(G), of a graph G is the set of characteristic vectors of edge cuts in G.

Theorem 4.10. The cycle space and the bond space of a connected n-vertex graph G with
m edges are binary vector spaces with dimensions m − n + 1 and n − 1, resp. They are
orthogonal complements to each other in Rm.

Proof. Check that the sum of char. vectors of even subgraphs (resp. of edge cuts) is
again a char. vector of an even subgraph (resp. of an edge cut).

Fix a spanning tree T . Each e ∈ E(G) − E(T ) forms a cycle with a part of T , and the
char. vectors of all these cycles are linearly independent. Thus, dim(C(G)) ≥ m− n+ 1.
Fix a vertex v ∈ V (G). For each w ∈ V (G)− v, let Bw be the edge cut separating w from

the rest. The char. vectors of all these cuts are linearly independent. Thus, dim(B(G)) ≥
n− 1.
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Since each cycle intersects each edge cut in an even number of edges, C ⊥ B for any
C ∈ C and B ∈ B. So by Rank-Nullity Theorem, dim(C(G)) + dim(B(G))) ≤ m. Thus,
dim(C(G)) = m− n+ 1 and dim(B(G)) = n− 1. □

A 2-basis for a linear subspace L of a space with a given basis B is a basis of L s.t. each
coordinate is non-zero in at most two vectors of this basis.

Theorem 4.11 (MacLane). A graph G is planar iff C(G) has a 2-basis.

Proof. (⇒) If G is not 2-connected, then any basis of C(G) is the disjoint union of bases
of cycle spaces of its blocks. If G is planar and 2-connected, and f is its planar drawing,
then the facial cycles of all its bounded faces form a 2-basis for C(G).

(⇐) Suppose G is not planar. Then it has a subdivision of K5 or K3,3.
Claim 1: C(K5) has no 2-basis.
Proof of Claim 1: By Theorem ??, a basis of C(K5) contains m− n+ 1 = 10− 5 + 1 = 6

even graphs C1, . . . , C6. Let C0 =
∑6

i=1 Ci. Note that each edge of G is in at most two of
C0, . . . , C6. Also C0 ̸= ∅, since it is a nontrivial sum of basis vectors. But

6∑
i=0

|Ci| ≥ 7 · 3 = 21 > 2|E(K5)|.

Claim 2: C(K3,3) has no 2-basis.
Proof of Claim 2: Repeat the proof of Claim 1, but the length of each cycle is now at least

4.
Claim 3: The space C(H) of a subdivision H of a graph G has a 2-basis iff the space C(G)

has a 2-basis.
Proof of Claim 3: Check for subdividing an edge.
Claim 4: If C(G) has a 2-basis, then for any e ∈ E(G), C(G− e) has a 2-basis.
——————————– Here Lecture 32 ended.
Proof of Claim 4: If e is a cut edge, then C(G − e) = C(G). Suppose e is not. Then

dim(C(G− e)) = dim(C(G))− 1. Let C = {C1, . . . , Ck} be a 2-basis of C(G).
If e ∈ C1 and to no other Ci, then C′ = C − C1 is a 2-basis of C(G − e). If e ∈ C1 ∩ C2,

then C′ = C− {C1, C2} ∪ (C1 + C2) is a 2-basis of C(G− e). This proves Claim 4.
The claims together with the fact that G has a subdivision of K5 or K3,3 prove the theo-

rem. □

A bond is an edge cut whose edge set does not contain edge sets of other nontrivial edge
cuts.

For a multigraph G, a multigraph H is an abstract dual to G if there is a bijection f :
E(G)→ E(H) s.t.
X ⊆ E(G) is a cycle in G ⇔ f(X) is a bond in H.

Theorem 4.12. A graph G is planar iff G has an abstract dual.

Proof. First, observe that G is planar iff each its block is planar. Also, G has an abstract
dual iff each its block has an abstract dual and the images of edge sets of distinct blocks are
disjoint. So, we prove the theorem for 2-connected graphs.

(⇒) If G is planar, then its geometric dual is its abstract dual.
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(⇐) Suppose G has an abstract dual H (using map f). The basis for B(H) constructed
in the proof of Theorem ?? is a 2-basis. Since f creates a bijection between C(G) and B(H),
C(G) has a 2-basis. □

4.2. Schnyder labelings. Let (G, f) be a triangulation. Then a cell is a bounded face. An
angle in a cell c is a pair (c, v) where v is a vertex of this cell, so each cell has 3 angles, and
each vertex v is in d(v) angles.
A Schnyder labeling of a triangulation (G, f) is a labeling of the angles in each cell with

1, 2 and 3 such that
(1) the angles in each cell are labeled with 1,2 and 3 in clockwise order, and
(2) each interior vertex has angles with each label appearing in clockwise order: first all

ones, then all two’s and the all 3’s.
Example!

Observation: Given a Schnyder labeling of a triangulation (G, f), if two cells abc and
abd share edge ab and their clockwise orders are a, c, b and a, b, d, then the labels at a are
distinct, and the labels at b coincide, and differ from the labels at a.

This allows us to define an orientation and an edge coloring of (G, f) (see the book). In
particular, the outdegree of each internal vertex is 3.

Lemma 4.13. The external vertices can be labeled v1, v2, v3 so that for each 1 ≤ i ≤ 3 all
internal angles at vi have label i.

Proof. Since G has 3n − 9 internal edges and from each of the n − 3 internal vertices
start 3 edges, the directed edges only enter the exterior vertices. □

Call an internal edge of a triangulation contractible if its end vertices have only two common
neighbors.

Lemma 4.14. If a is an external vertex of a triangulation (G, f) with |V (G)| ≥ 4, then
some internal edge au is contractible.

Proof. Let the neighborhood of a is a cycle C = x1x2 . . . xk, x1 where x1, xk are external
(draw a picture!). Choose a shortest chord xixi+t of the path C − x1xk. Then axi+1 is
contractible. □

——————————– Here Lecture 33 ended.

Theorem 4.15. Each triangulation has a Schnyder labeling.

Proof. By induction with contractions (see the book). □

The next lemma shows that all Schnyder labelings appear ”this way”.

Lemma 4.16. Let L be a Schnyder labeling of a triangulation (G, f) with |V (G)| ≥ 4. Then
for each 1 ≤ i ≤ 3, vi has an internal neighbor ui s.t.
(a) viui is contractible and
(b) all internal angles at ui not involving vi are labeled by i.
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Proof. Let the neighborhood of vi be a cycle C = x1x2 . . . xk, x1 where x1 = vi−1, xk = vi+1

( draw a picture!).
Each of xjxj+1 has an orientation, in particular,←−−x1x2 and

−−−−→xk−1xk. So, there is j s.t.
←−−−−xj−1xj

and −−−−→xjxj+1. Then we have the 3 edges starting from xj, so (b) holds.
If vixj is not contractible, then we may assume there is some s s.t. xj, xj+s ∈ E(G).

(Pictures!)
By (b), the orientation is −−−−→xj+sxj. But then two edges, −−−−→xj+sxj and −−−→xj+svi, of color i start

from xj+s, a contradiction. □

Theorem 4.17 (Uniform Angle Lemma). In every Schnyder labeling of a triangulation
(G, f) for each 1 ≤ i ≤ 3 and each cycle C in G, there is an i-uniform vertex xi on Ci,
i.e. all angles at xi inside C have label i.

Proof. By induction on n = |V (G)|. If C visits all external vertices, then O.K. (In
particular, n > 3.)
Otherwise, suppose v1 /∈ V (C). By Lemma ??, there is u1 ∈ N(v1)−v2−v3 s.t. contracting

v1u1 leads to a smaller triangulation G′, f ′) with ”the same” labeling L′. By minimality, C
has a 1-uniform vertex x1.
If u1 /∈ V (C), then nothing changes at x1. If u1 ∈ V (C), then C visits v1 in G′. So, again

x1 is 1-uniform in C. □

Theorem 4.18 (Tree Lemma). In every Schnyder labeling of a triangulation (G, f) for each
1 ≤ i ≤ 3 the edges of color i form an (n − 2)-vertex in-tree Ti with root vi. Also, for each
internal vertex v, the paths from v to vi in Ti are internally disjoint for distinct i.

Proof. Let Ti denote the subgraph G formed by the edges of color i. Then |E(Ti)| = n−3
and vertices vi−1 and vi+1 are not in Ti. Suppose first that Ti has a cycle C = x1x2 . . . xkx1.
Since only one edge of color i starts from each xj, C is a directed cycle, say −−−−→xjxj+1 ∈ E(C) for
each j. But then for each j label i is present at the end of each −−−−→xjxj+1 inside C, contradicting
Theorem ??.

Thus, Ti has n − 2 vertices, n − 3 edges and no cycles. So, it is a tree. Since no vertex
apart from vi is a sink in Ti, the tree is an in-tree with root vi.
Suppose now that for u ̸= v there are v, u-paths in both T1 and T2. Choose such u

and v so that the total length of the paths is minimum. Then these paths, say P1 and P2

form a cycle, say C. Note that at each internal vertex of P1 there is an angle of color 1
and an angle of another color. The same for P2 (with 1 switched to 2). Thus uniform ver-
tices can be only u and v, but Theorem ?? says there are 3 such vertices, a contradiction. □

——————————– Here Lecture 34 ended.
——————————– Lecture 35 was presented by Mina Nahvi.

Let Pi(v) denote the v, vi-path in Ti.
Let Ri(v) denote the region enclosed by Pi−1(v), Pi+1(v) and edge vi−1vi+1.

Lemma 4.19. Let 1 ≤ i ≤ 3. If u and v are distinct internal vertices in a triangulation
(G, f) and in a Schnyder labeling L of (G, f), u ∈ Ri(v), then Ri(u) is properly contained
in Ri(v).
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Proof. We may assume that i = 1. It is enough to show that neither of P2(u) and P3(u)
has a vertex outside R1(v).

Consider first P2(u). If it comes to P2(v), then it must follow P2(v) till the very end.

Suppose P2(u) hits P3(v) − P2(v) at w. Then w ̸= v, so there are edges
−−→
w′w and

−−→
ww′′ on

P3(v) (of color 3). But then all edges of color 2 must hit w from the right, i.e. from R2(v),
and the unique edge of color 2 leaving w goes to R1(v).
Symmetrically, if P3(u) comes to P3(v), then it then follows P3(v) till the very end, and

every edge of color 3 leaving P2(v) goes to R1(v). □

A digression.

A barycentric representation of G is an injection ϕ : V (G)→ R3 s.t.
(i) the coordinates v1, v2, v3 of ϕ(v) are nonnegative and v1+v2+v3 = 1 for each v ∈ V (G),

and
(ii) if uv ∈ E(G) and w ∈ V (G)− u− v, then wi > max{ui, vi} for some i ∈ [3].

Lemma 4.20. If ϕ is a barycentric representation of G, then drawing the edges of G as
straight segments connecting the images of the vertices yields a planar drawing of G.

Proof. Recall that ϕ is an injection. Consider any two edges uv and wz with all 4 vertices
distinct. By Part (ii) of the definition, there are indices i, j, h, k s.t.

ui > max{wi, zi}, vj > max{wj, zj}, wh > max{uh, vh}, zk > max{uk, vk}.
By definition, {i, j}∩{h, k} = ∅. By pigeonhole and symmetry, we may assume i = j. Then
there is α s.t. both u and v are above the line xi = α, and both w and z are below it.
We also need to exclude the situation when say edge uv contains edge wv. If this would

happen then (ii) would not hold. □

Given a Schnyder labeling L of a triangulation (G, f), for each internal v let ri(v) denote
the number of cells in Ri(v). Also, for an external vertex vi, let ri(vi) = 2n−5 and rj(vi) = 0
when j ̸= i. Then r1(v) + r2(v) + r3(v) = 2n− 5 for all v ∈ V (G). Now define

(2) ϕ(v) =

(
r1(v)

2n− 5
,
r2(v)

2n− 5
,
r3(v)

2n− 5

)
∀v ∈ V (G).

Theorem 4.21. The function ϕ defined by (??) is a barycentric representation of G.

Proof. Part (i) of the definition is clear. Suppose w is not an end of edge uv. If w is
external, then (ii) is obvious. Suppose w is internal. Then u is in some Ri(w) and v is in
some Rj(w). Since they are adjacent, either they both are in Ri(w) or they both are in
Rj(w), say they both are in Ri(w). Then wi > max{ui, vi}. □

So, each planar graph has a straight-line embedding into the grid points of the triangle
with corners (0, 0), (2n− 5, 0) and (0, 2n− 5).

To shrink the size of the triangle, here is a refinement. We will closer follow the book
notation for the homework.
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——————————– Here Lecture 36 ended.
A weak barycentric representation of G is an injection ϕ : V (G)→ R3 s.t.
(1) the coordinates v1, v2, v3 of ϕ(v) are nonnegative and v1+v2+v3 = 1 for each v ∈ V (G),

and
(2) if xy ∈ E(G) and z ∈ V (G) − x − y, then for some k ∈ [3] vectors (xk, xk+1) and

(yk, yk+1) are lexicographically less than (zk, zk+1).

For an internal vertex v of a triangulation (G, f) with a Schnyder labeling L, let v′i denote
the number of vertices in Ri(v) − Pi−1(v). Then v′1 + v′2 + v′3 = n − 1. For an external
vertex vj, Rj(vj) has n vertices, Pj(vj) has one vertex and each of Pj−1(vj), Pj+1(vj) has two
vertices. So, let (vj)

′
j = n− 2, (vj)

′
j+1 = 1, and (vj)

′
j−1 = 0.

TWO LEMMAS AND THEOREM IN HW5.

4.3. Small separators in planar graphs. .
An (m,α)-separation of G is a partition V (G) = A ∪B ∪ C s.t
(a) |C| ≤ m, (b) G− C has no edges between A and B, and (c) |A|, |B| ≤ α|V (G)|.
A class F of graphs is an f -separator with shrink factor α if each G ∈ F has an

(f(|V (G)|, α)-separation.
In general, for each ϵ > 0 there is cϵ > 0 s.t. for almost all G with (2 + ϵ)k vertices and

cϵk edges deleting any k vertices results in a graph with a component with ≥ k vertices.

Lemma 4.22. Let (G, f) be a near-triangulation with a 2-coloring of vertices with red and
blue. If the outer cycle C has red vertices x, y, then G has either a red x, y-path or a blue
path connecting the components of C − x− y.

Proof. Consider the set A of the red vertices reachable from x via red paths. Consider
its neighborhood. Use triangualtion (in class). □

Lemma 4.23. Let (G, f) be a near-triangulation with the outer cycle C = v0, v1, . . . , v2k−1, v1.
If G has no v0, vk-path of length at most k−1, then there are k−1 disjoint paths P1, . . . , Pk−1

where Pi connects vi with v2k−i.

Proof. Let S be a smallest set separating X = {v1, . . . , vk−1} from Y = {vk+1, . . . , v2k−1}
in G − v0 − vk. Let Red = S ∪ {v0, vk}. By definition, G has no blue X, Y -path. Then by
Lemma ??, G has a red v0, vk-path. But this path has at least k − 1 internal vertices, so
|S| ≥ k − 1. By Menger (Pym), there are k − 1 disjoint X, Y -paths. They form the linkage
we promised, since (G, f) is plane. □

Theorem 4.24 (Lipton and Tarjan). For each n ≥ 1 each n-vertex planar graph has a
(2
√
2n, 2/3)-separation.

Proof. So we prove the theorem for triangulations by induction on n. If n < 30, then
simply delete any ⌊

√
8n⌋ vertices. Let k = ⌊

√
2n⌋.

——————————– Here Lecture 37 ended.
Define C+ and C−, c+ = |C+| and c− = |C−|.
Among the cycles C with c+ ≥ 2n/3 and |C| ≤ 2k, choose one with the minimum c−− c+.
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If c− ≤ 2n/3, we are done. Suppose c− > 2n/3. Let D = G[C− ∪V (C)]. For u, v ∈ V (C),
let c(u, v) (resp., d(u, v)) be the distance between u and v in C (resp., in D). Since C ⊂ D,
c(u, v) ≤ d(u, v).

Claim 1: d(u, v) = c(u, v) for all u, v ∈ V (C).
Indeed, if not, choose a wrong pair (u, v) with minimum d(u, v). Let P be a shortest

u, v-path in G. By minimality, V (P ) ∩ V (C) = {u, v}. P forms with C two cycles, C1 and
C2. Suppose c−1 ≥ c−2 . By construction, |C1| ≤ |C| ≤ 2k. Now,

n− c+1 = c−1 + |V (C1)| ≥
c−1 + c−2

2
+ 2|V (P )| − 1 >

c−

2
+ |V (P )| ≥ n

3
.

Thus, c+1 ≤ 2n
3
, contradicting the minimality of c− − c+.

Claim 2: |C| = 2k.
If shorter, we can make c− smaller (using Claim 1).

So, let C = v0, v1, . . . , v2k−1, v1. By Claim 1 and Lemma ??, there are disjoint paths
P1, . . . , Pk−1, where Pi is a vi, v2k−i-path. Again by Claim 1, |V (Pi)| ≥ 1+min{2i, 2(k− i)}.
Hence

|V (G)| > |V (D)| ≥ (1+3+. . .+⌈((k+1)/2)2⌉)+(1+3+. . .+⌊((k+1)/2)2⌋) ≥ (k + 1)2

2
> n,

a contradiction. □

Applications.

4.4. Discharging for planar graphs. .
Examples of discharging, versions of Euler’s Formula. The FCT.
A normal plane map is a connected plane multigraph whose vertex degrees and face lengths

all are at least 3.
Lebesgue (1940) proved that each 3-connected plane graph (G, f) with δ(G) ≥ 5 has a

3-face (a, b, c) with d(a) + d(b) + d(c) ≤ 19. Kotzig (1963) improved 19 to 18 and in 1979
conjectured 17. An example of 17 is obtained from the dodecahedron by inserting a vertex
into each face.

Theorem 4.25 (Borodin, 1989). Every normal plane map (G, f) with δ(G) ≥ 5 has a 3-face
(a, b, c) with d(a) + d(b) + d(c) ≤ 17.

——————————– Here Lecture 38 ended.
Proof. For a given n, consider an edge maximal counter-example (G, f).
Claim: For each 4+-face F , d(v) = 5 for every v ∈ F (by the maximality of (G, f)).
(Here normal maps are used.)
Define the initial charge: ch(v) = d(v) − 6 for each v ∈ V (G) and ch(α) = 2d(α) − 6 for

each face of (G, f).

Discharging:
(R1) Each 4+-face gives 1/2 to each its vertex.
(R2) Each 7-vertex gives 1/3 to each its 5-neighbor.
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(R3) Each 8+-vertex gives 1/4 to each incident 3-face and then each such 3-face shares
the obtained surplus among its 5-vertices.

We will prove that the new charge ch∗ is nonnegative for each vertex and face.
First, look at faces. Each 3-face has initial charge 0 and gives out only a surplus. For k ≥ 4

any k-face α gives out by (R1) exactly k/2 and remains with the charge (2k − 6) − k/2 =
3
2
(k − 4) ≥ 0.
Now, look at vertices. For k ≥ 8 any k-vertex v gives out by (R3) at most k/4 and remains

with the charge at least k − 6− k/4 = 3
4
(k − 8) ≥ 0.

Suppose d(v) = 7. By the claim, all faces containing v are triangles. Hence no two
consecutive neighbors are 5-vertices. It follows that has at most 3 5-neighbors. Thus,
ch∗(v) ≥ 7− 6− 3(1/3) = 0.

If d(v) = 6, then v keeps its original charge of 0.
Finally, suppose d(v) = 5 and the neighbors of v are x1, . . . , x5 in clockwise order. At the

start, its charge is −1. If v is incident with at least two 4+-faces, then by (R1) it will get
from them 2(1/2) = 1. Let now v be incident with exactly one 4+-face α and let x1, v, x5

be a part of the boundary of α (see the picture in class). By the claim, d(x1) = d(x5) = 5.
Then d(x2) ≥ 8 and d(x4) ≥ 8, so v will get from them by (R3) at least 4((1/4)/2) = 1/2
and get 1/2 from α.
Now, assume all faces incident to v are 3-faces. Then at most two neighbors of v are

5-vertices. If exactly two, then the remaining neighbors are 8+-vertices that together will
give 1 to v (see pictures in class). Suppose only x1 is the 5-neighbor of v. Then x2 and x5

are 8+-vertices and one of x3, x4 is a 7+-neighbor, say d(x3) ≥ 7. Then x5 gives to v 1/8 via
face vx5x1 and 1/4 via face vx5x4. Similarly, x1 gives to v 3/8. Vertex x3 gives to v 1/3 if
d(x3) = 7 and 1/2 if d(x3) ≥ 8.

The last subcase of the last case is that v has no 5-neighbors. Then it has at least 3
7+-neighbors, and each of them gives to v at least 1/3. □

Recall:

Theorem 4.26 (Grötzsch). Every planar graph with no triangles is 3-colorable.

Conjecture (Steinberg, 1976). Every planar graph with no 4-cycles and 5-cycles is
3-colorable.

Question (Erdős, 1993). Does there exists k ≥ 5 such that every planar graph with no
cycles of length 4, 5, . . . , k is 3-colorable?

Abbott and Zhou: k = 11 works.
——————————– Here Lecture 39 ended.
Borodin (1996), Sanders and Zhao (1995): k = 9 works.
Borodin, Glebov, Raspaud and Salavatipour (2006): k = 7 works.
Voigt (2005): Not for list coloring.
Cohen, Addad, Hebdige, Král, Li and Salgado (2017): k = 5 DOES NOT WORK.
We will prove that k = 9 works.

Lemma 4.27 (Borodin (1996)). Every plane graph (G, f) with δ(G) ≥ 3 has
(i) two 3-faces with a common edge, or
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(ii) a j-face for some 4 ≤ j ≤ 9, or
(iii) a 10-face with all vertices of degree 3.

Proof. Suppose none of (a)–(c) holds. Apply the balanced Euler’s Formula:∑
v∈V (G)

(d(v)− 4) +
∑

α∈F (G,f)

(d(α)− 4) = −8.

For each x ∈ V (G)∪F (G, f), the initial charge is ch(x) = d(x)− 4. The discharging rules
are:

(R1) Each 3-face gets 1/3 from each incident vertex.
(R2) Each non-3-face α (d(α) ≥ 10) gives:
(a) 2/3 to each incident 3-vertex incident to a 3-face,
(b) 1/3 to each other incident 3-vertex,
(c) 1/3 to each incident 4-vertex on two 3-faces,
(d) 1/3 to each incident 4-vertex that has a 3-face opposite to α.

Let us check that the new charge ch∗(x) is nonnegative for each x ∈ V (G)∪F (G, f) (which
would be a contradiction). Consider all cases for x:

(A) x is a 3-face. By (R1), ch∗(x) = (3− 4) + 3(1/3) = 0.
(B) x is a 3-vertex. If x is in no 3-faces, then by (R2)(b), ch∗(x) = (3− 4) + 3(1/3) = 0.

If there is an incident 3-face (then only one!), then x gives to it 1/3 by (R1), but gets
2(2/3) = 4/3 by (R2)(a).
(C) x is a 4-vertex. If x is in no 3-faces, then ch∗(x) = ch(x) = 0. If there is exactly one

incident 3-face, then x gives to it 1/3 by (R1), but gets 1/3 by (R2)(d). If there are two
incident 3-faces (it cannot be more), then x gives to them 2(1/3) by (R1), but gets 2(1/3)
by (R2)(c).

(D) x is a j-vertex for some j ≥ 5. Then x belongs to at most ⌊j/2⌋ 3-faces, so by (R1),
ch∗(x) ≥ (j − 4)− ⌊j/2⌋(1/3) > 0.
(E) x is a j-face for some j ≥ 10, say x = vi, v2, . . . , vj, v1. If x gives 2/3 to some vi, then

d(vi) = 3 and vi belongs to a 3-face α.

(3) This α shares exactly one edge with x.

Thus when j is odd, x cannot give 2/3 to each its vertex. Hence ch∗(x) ≥ (j − 4)− j(2/3)
when j is even and ch∗(x) ≥ (j − 4)− j(2/3) + 1/3 when j is odd. This is nonnegative for
all j ≥ 11.
Let j = 10 and exactly i vertices of x be 3-vertices on 3-faces. If i = 10, then Part (iii)

of the lemma holds. If i ≤ 8, then ch∗(x) ≥ (10−4)−8(2/3)−2(1/3) = 0. By (??), i ̸= 9. □

Theorem 4.28 (Borodin, Sanders and Zhao). Every planar graph with no cycles of length
4, 5, . . . , k is 3-colorable.

Proof. If not, then there is a counter-example (G, f) with the fewest vertices. By mini-
mality, G is 4-critical, so it is 2-connected and δ(G) ≥ 3. By Lemma ??, G has a 10-cycle
C with |C| = 10. Since G is 4-critical, G − V (C) has a 3-coloring ϕ. Extend it to C (in
class). □
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