5. LECTURE NOTES: HAMILTONIAN CYCLES AND CIRCUMFERENCE

A Hamiltonian cycle in a graph G is a cycle passing through all vertices of G. If a graph
has a Hamiltonian cycle, then it is also called Hamiltonian.

It is an NP-complete problem to check whether a graph has a Hamiltonian cycle. Here
are two quite dense graphs with no such cycles.
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Theorem 5.1 (Dirac). Let n > 3 and G be an n-vertex graph. If 6(G) > n/2, then G has
a Hamiltonian cycle.

Here Lecture 40 ended.

Proof 1. Suppose the theorem fails for some n > 3. Let G be an n-vertex simple graph
such that

(a) 6(G) = n/2,

(b) G has no Hamiltonian cycle, and

(c) G has the most edges among the simple graphs satisfying (a) and (b).

By (b), G # K,,. Let zy ¢ F(G) and G' = G+ zy. By (c), G’ has a Hamiltonian cycle C.

By (b), xy € E(C). Rename the vertices of G so that C' = vy,vs,...,0,,v1, = v1 and

Y = Up.

~ —

Let S = N(vy) and T' = {v;41 : viv, € E(G)}.
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If thereis 1 <i<n-—1s.t. v; € SNT, then G has Hamiltonian cycle
V1, V2, .« oy ViUn, Unyy - - -, Vit1, V1, & contradiction.
Hence S and T are disjoint. Moreover, v; ¢ S UT.
So |S|+ |T| + 1 < n. On the other hand, |S| = d(z) > n/2 and |T| = d(y) > n/2. So

n/2+n/2+1<n,

a contradiction. O

Idea of Proof 2 (Original). In the first step, by looking at a longest path, we greedily
find a cycle of length at least 1 + n/2.

In the second step, Dirac considered a lollipop, i.e. a pair (C, P) s.t. C'is a cycle and P
is a path starting from C.

We maximize |C|, and modulo this maximize |P)|.

The end z of P cannot be adjacent to two consecutive vertices of C', and cannot be adja-
cent to vertices of C close to the start of P. [J

In Proof 1, we actually did not use §(G) > n/2 in full, we needed |S| + |T'| > n.
Let 09(G) = mingy¢pe) d(z) + d(y). The same Proof 1 gives us

Theorem 5.2 (Ore). Let n > 3 and G be an n-vertex simple graph. If 05(G) > n, then G
has a Hamiltonian cycle.

A slight modification of Proof 1 gives the following refinement.

Theorem 5.3 (Pdsa). Let n > 3, k > 0 and let G be an n-vertex graph with oo(G) > n+k.
Then for each linear forest F C G with k edges G has a Hamiltonian cycle containing F'.

Proof. Suppose the theorem fails for some n. Let G be an n-vertex simple graph such
that

(a) 02(G) >n+k

(b) for some linear forest F' C G with k edges, G has no Hamiltonian cycle containing F,
and

(c) G has the most edges among the simple graphs satisfying (a) and (b).

By (b), G # K,,. Let 2y ¢ E(G) and G' = G + xy. By (c¢), G’ has a Hamiltonian cycle C'
containing F'.

By (b), xy € E(C). Rename the vertices of G so that C' = vy, vs,...,0,,v1, © = vy and
Y = Up.

Let S = N(vy) and T' = {v;41 : viv, € E(G)and v;v41 ¢ E(F)}.

If thereis 1 <i<n-—1s.t. v; € SNT, then G has Hamiltonian cycle
V1,02, « ««y ViUpy Upys - - -, Vig1, U1 containing £, a contradiction.

Therefore, S and T" are disjoint. Moreover, v; ¢ SUT.

Hence |S|+|T|+1 < n. On the other hand, |S| = d(x)—|E(F)| = d(z)—k and |T'| = d(y).
So d(z) + d(y) — k+ 1 < n, a contradiction. [

Corollary 5.4. Let n > 3 and let G be an n-vertex graph with o2(G) > n+ 1. Then G is

hamiltonian-connected.
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Corollary 5.5. Let n > 3 and let G be an n-vertex graph. Let x,y € V(G) and xy ¢ E(G).
Suppose d(z) + d(y) > n. Then G has a Hamiltonian cycle iff G + xy has a Hamiltonian
cycle.

Notion of n-closure!

Theorem 5.6 (Chvatal). Let n > 3 and let G be a graph with vertex set V = {vy,...,v,}.
Suppose that d(vy) < d(vy) < ... < d(v,) and for every i < n/2

(1) dv;) >1 or d(v,—;) >n—i.
Then G has a Hamiltonian cycle.
Sharpness example: K, K, K, _o;.

Here Lecture 41 ended.

Proof. Suppose the theorem fails for some n > 3. Let G be an n-vertex counter-example
with the most edges. By maximality, for each zy ¢ E(G) there is a Hamiltonian z, y-path.
Choose such a pair (z,y) with maximum d(z) + d(y) and d(z) < d(y). By Corollary 5.5,

) d(x) +d(y) <n—1.
Let t =d(x). By (2),t < (n—1)/2. Let P = wy,ws,...,w, be a Hamiltonian x, y-path (so
T =wi,y = wy,) and w;,, W;,, ..., w; be the neighbors of x on P (picture in class!). Clearly,

i1 = 2. By the choice of (z,y), d(w;;—1) <tforall 1 <j <t

Hence d(v;) < t, and each of n —t — 1 nonneighbors of x has degree < d(y). Together with
x, at least n — t vertices have degree < d(y) < n — 1 —t. This yields d(v,—) <n—1t—1,
which together with d(v;) <t contradicts (1). O

Theorem 5.7 (Chvatal and Erdds). Let n > 3 and let G be an n-vertex graph. If k(G) >
a(G), then G has a Hamiltonian cycle.

Sharpness example: K, ;.

Proof. Suppose k = k(G) and C = vq,...,v; is a longest cycle in G. Let H be a
component of G — V(C) and let S = {v;,,...,v;,.} = N(H)NV(C). Note that S does not
contain consecutive vertices on C, and so s < t/2. Since G is k-connected, s > k.

Let S~ = {v;_1 : v; € S}. If two vertices in S~ are adjacent, then C' is not a longest
path (picture in class!!). Thus, for any v € V(H), the set S~ + v is independent, implying
a(G) > 14 |S7| > 1+ s> 1+k, a contradiction. [

Circumference, ¢(G), the number of vertices in the longest path, p(G).
Dirac observed that

(3) ¢(G) > §(G) + 1 for every graph G.

We have used this.

Theorem 5.8 (Erdés and Gallai, 1959). Let n > 3, k > 2 and let G be an n-vertex graph.
(A) If |E(G)| > (kK —1)(n —1)/2, then ¢(G) > k.

(B) If |E(G)| > (k —2)n/2, then p(G) > k.
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Sharpness examples: For (B): many disjoint copies of Kj_;. For (A): Many copies of
K1 all sharing the same vertex.

Let n > k, g > a > 1. Define the n-vertex H,, j

V(Hpra) =AUBUC, where |A| =a, |[Bl|=n—Fk+a, |C] =k —2a.

H, ko] AUC] = Ky—g, Hp oAU B] = Ky 90 — E(K,—k+4) and no edges between B and
C.

A

%
FIGURE 1. Graph Hyj 13-

Graph H,, 1, has no cycles of length k or greater.

Let
k—a

2

Theorem 5.9 (Kopylov, 1977). Let n > k > 5 and t = |551]. If G is an n-vertex 2-
connected graph with no cycle of length at least k, then

(4) e(G) < max{h(n,k,2), h(n, k,t)}.

Lemma 5.10 (Kopylov, 1977). Let n > 3 and G be a 2-connected n-vertex graph. Let
x,y € V(G) and P be an x,y-path with m edges. Then

(5) c(G) > min{m + 1, dgp)(x) + derp(y) }
Here Lecture 42 ended.

h(n,k,a) = e(Hy o) = ( ) +a(n—k +a).

5.1. Proof of Theorem 5.9 modulo Lemma 5.10. Among the counterexamples with n
vertices, choose a graph GG with the most edges. Then G has the following properties:

(A1) e(G) > h(n,k,t) = (V") +t(n — k+1t) and e(G) > h(n,k,2) = (*}%) +2(n — k+2);
(A2) ¢(G) <k —1; and

(A3) for each pair {z,y} of the vertices in G with xy ¢ E(G), G has an x,y-path P,
with at least £ — 1 edges.

A j-disintegration of G is a consecutive deletion of vertices of degree at most j while it is
possible.

(6) If j-disintegration of H deletes all its edges, then e(H) < (*3') +j(|V(H)|—j — 1).
Let G’ be obtained from G by t-disintegration. If G’ = (), then by (6),
t+1
e(G) < ( ; ) Ftn—t—1) = h(n, k1),

a contradiction to (Al).



So, G' is a non-empty graph with 6(G’) > t+ 1. Let L = V(G') and ¢ = |L|.
Claim 5.11. G’ = K.

Proof. Suppose z,y € V(G') and zy ¢ E(G’). By (A3), G has a path P, , of length at
least £ — 1. Let P be a longest path in G with both ends in L and let u and v be its ends.
Then the length of P is at least kK — 1. Since P is longest, neither v nor v has neighbors in
L —V(P). Thus dgp)(u) > de(u) > t+1 and dgpj(v) > der(v) > t+ 1. So by Lemma 5.10,

c(G)>min{(k—1)+1,(t+1)+ (t+ 1)} = min{k, 2t + 2} =k,
a contradiction to (A2). O

Observe that t + 1 < ¢ < k — 2. Let G” be obtained from G by (k — ¢)-disintegration, let
V(G") = M and let m = |M|. Certainly, G” O G'. If G" = G, then

e(G) < (g) +(k—0n—k+10) =h(nkk—1),

a contradiction to (A1). Thus M — L # ().
Claim 5.12. Fvery x € M — L s adjacent to each y € L.

Proof. Suppose v € M — L,y € L and xy ¢ E(G’). By (A3), G has a path P, of length
at least k — 1. Let P be a longest path in G with both ends in M and at least one end in
L. Let u and v be its ends such that v € L. Then the length of P is at least k — 1. Since P
is longest, neither u nor v has neighbors in L — V(P). Thus dgp)(u) > der(u) > (k=€) + 1
and dgp)(v) > der(v) > £ — 1. So by Lemma 5.10,

c¢(G) >min{(k—1)+1,(k—¢+1)+ ({ - 1)} =min{k, k} =&,
a contradiction to (A2). O

But then §(G”) > ¢, and G’ cannot be the result of ¢-disintegration of G. [

REVIEW OF THE COURSE.



