5. Lecture notes: Hamiltonian cycles and circumference

A Hamiltonian cycle in a graph G is a cycle passing through all vertices of G. If a graph has a Hamiltonian cycle, then it is also called Hamiltonian.

It is an NP-complete problem to check whether a graph has a Hamiltonian cycle. Here are two quite dense graphs with no such cycles.

Theorem 5.1 (Dirac). Let $n \geq 3$ and G be an n-vertex graph. If $\delta(G) \geq n / 2$, then G has a Hamiltonian cycle. Here Lecture 40 ended.

Proof 1. Suppose the theorem fails for some $n \geq 3$. Let G be an n-vertex simple graph such that
(a) $\delta(G) \geq n / 2$,
(b) G has no Hamiltonian cycle, and
(c) G has the most edges among the simple graphs satisfying (a) and (b).

By (b), $G \neq K_{n}$. Let $x y \notin E(G)$ and $G^{\prime}=G+x y$. By (c), G^{\prime} has a Hamiltonian cycle C.
By (b), $x y \in E(C)$. Rename the vertices of G so that $C=v_{1}, v_{2}, \ldots, v_{n}, v_{1}, x=v_{1}$ and $y=v_{n}$.

Let $S=N\left(v_{1}\right)$ and $T=\left\{v_{i+1}: v_{i} v_{n} \in E(G)\right\}$.

If there is $1 \leq i \leq n-1$ s. t. $v_{i} \in S \cap T$, then G has Hamiltonian cycle $v_{1}, v_{2}, \ldots, v_{i} v_{n}, v_{n_{1}}, \ldots, v_{i+1}, v_{1}$, a contradiction.

Hence S and T are disjoint. Moreover, $v_{1} \notin S \cup T$.
So $|S|+|T|+1 \leq n$. On the other hand, $|S|=d(x) \geq n / 2$ and $|T|=d(y) \geq n / 2$. So

$$
n / 2+n / 2+1 \leq n
$$

a contradiction.

Idea of Proof 2 (Original). In the first step, by looking at a longest path, we greedily find a cycle of length at least $1+n / 2$.

In the second step, Dirac considered a lollipop, i.e. a pair (C, P) s.t. C is a cycle and P is a path starting from C.

We maximize $|C|$, and modulo this maximize $|P|$.
The end x of P cannot be adjacent to two consecutive vertices of C, and cannot be adjacent to vertices of C close to the start of P.

In Proof 1 , we actually did not use $\delta(G) \geq n / 2$ in full, we needed $|S|+|T| \geq n$.
Let $\sigma_{2}(G)=\min _{x y \notin E(G)} d(x)+d(y)$. The same Proof 1 gives us
Theorem 5.2 (Ore). Let $n \geq 3$ and G be an n-vertex simple graph. If $\sigma_{2}(G) \geq n$, then G has a Hamiltonian cycle.

A slight modification of Proof 1 gives the following refinement.
Theorem 5.3 (Pósa). Let $n \geq 3, k \geq 0$ and let G be an n-vertex graph with $\sigma_{2}(G) \geq n+k$. Then for each linear forest $F \subset G$ with k edges G has a Hamiltonian cycle containing F.

Proof. Suppose the theorem fails for some n. Let G be an n-vertex simple graph such that
(a) $\sigma_{2}(G) \geq n+k$
(b) for some linear forest $F \subset G$ with k edges, G has no Hamiltonian cycle containing F, and
(c) G has the most edges among the simple graphs satisfying (a) and (b).

By (b), $G \neq K_{n}$. Let $x y \notin E(G)$ and $G^{\prime}=G+x y$. By (c), G^{\prime} has a Hamiltonian cycle C containing F.

By (b), $x y \in E(C)$. Rename the vertices of G so that $C=v_{1}, v_{2}, \ldots, v_{n}, v_{1}, x=v_{1}$ and $y=v_{n}$.

Let $S=N\left(v_{1}\right)$ and $T=\left\{v_{i+1}: v_{i} v_{n} \in E(G)\right.$ and $\left.v_{i} v_{i+1} \notin E(F)\right\}$.
If there is $1 \leq i \leq n-1$ s. t. $v_{i} \in S \cap T$, then G has Hamiltonian cycle $v_{1}, v_{2}, \ldots, v_{i} v_{n}, v_{n_{1}}, \ldots, v_{i+1}, v_{1}$ containing F, a contradiction.

Therefore, S and T are disjoint. Moreover, $v_{1} \notin S \cup T$.
Hence $|S|+|T|+1 \leq n$. On the other hand, $|S|=d(x)-|E(F)|=d(x)-k$ and $|T|=d(y)$. So $d(x)+d(y)-k+1 \leq n$, a contradiction.

Corollary 5.4. Let $n \geq 3$ and let G be an n-vertex graph with $\sigma_{2}(G) \geq n+1$. Then G is hamiltonian-connected.

Corollary 5.5. Let $n \geq 3$ and let G be an n-vertex graph. Let $x, y \in V(G)$ and $x y \notin E(G)$. Suppose $d(x)+d(y) \geq n$. Then G has a Hamiltonian cycle iff $G+x y$ has a Hamiltonian cycle.

Notion of n-closure!
Theorem 5.6 (Chvátal). Let $n \geq 3$ and let G be a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Suppose that $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \ldots \leq d\left(v_{n}\right)$ and for every $i<n / 2$

$$
\begin{equation*}
d\left(v_{i}\right)>i \quad \text { or } \quad d\left(v_{n-i}\right) \geq n-i . \tag{1}
\end{equation*}
$$

Then G has a Hamiltonian cycle.
Sharpness example: $\overline{K_{i}}-K_{i}-K_{n-2 i}$.

Here Lecture 41 ended.

Proof. Suppose the theorem fails for some $n \geq 3$. Let G be an n-vertex counter-example with the most edges. By maximality, for each $x y \notin E(G)$ there is a Hamiltonian x, y-path. Choose such a pair (x, y) with maximum $d(x)+d(y)$ and $d(x) \leq d(y)$. By Corollary 5.5,

$$
\begin{equation*}
d(x)+d(y) \leq n-1 \tag{2}
\end{equation*}
$$

Let $t=d(x)$. By $(2), t \leq(n-1) / 2$. Let $P=w_{1}, w_{2}, \ldots, w_{n}$ be a Hamiltonian x, y-path (so $x=w_{1}, y=w_{n}$) and $w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{t}}$ be the neighbors of x on P (picture in class!). Clearly, $i_{1}=2$. By the choice of $(x, y), d\left(w_{i_{j}-1}\right) \leq t$ for all $1 \leq j \leq t$.

Hence $d\left(v_{t}\right) \leq t$, and each of $n-t-1$ nonneighbors of x has degree $\leq d(y)$. Together with x, at least $n-t$ vertices have degree $\leq d(y) \leq n-1-t$. This yields $d\left(v_{n-t}\right) \leq n-t-1$, which together with $d\left(v_{t}\right) \leq t$ contradicts (1).

Theorem 5.7 (Chvátal and Erdős). Let $n \geq 3$ and let G be an n-vertex graph. If $\kappa(G) \geq$ $\alpha(G)$, then G has a Hamiltonian cycle.

Sharpness example: $K_{r, r+1}$.
Proof. Suppose $k=\kappa(G)$ and $C=v_{1}, \ldots, v_{t}$ is a longest cycle in G. Let H be a component of $G-V(C)$ and let $S=\left\{v_{i_{1}}, \ldots, v_{i_{s}}\right\}=N(H) \cap V(C)$. Note that S does not contain consecutive vertices on C, and so $s \leq t / 2$. Since G is k-connected, $s \geq k$.

Let $S^{-}=\left\{v_{j-1}: v_{j} \in S\right\}$. If two vertices in S^{-}are adjacent, then C is not a longest path (picture in class!!). Thus, for any $v \in V(H)$, the set $S^{-}+v$ is independent, implying $\alpha(G) \geq 1+\left|S^{-}\right| \geq 1+s \geq 1+k$, a contradiction.

Circumference, $c(G)$, the number of vertices in the longest path, $p(G)$.
Dirac observed that

$$
\begin{equation*}
c(G) \geq \delta(G)+1 \text { for every graph } G \tag{3}
\end{equation*}
$$

We have used this.
Theorem 5.8 (Erdős and Gallai, 1959). Let $n \geq 3, k \geq 2$ and let G be an n-vertex graph.
(A) If $|E(G)|>(k-1)(n-1) / 2$, then $c(G) \geq k$.
(B) If $|E(G)|>(k-2) n / 2$, then $p(G) \geq k$.

Sharpness examples: For (B): many disjoint copies of K_{k-1}. For (A): Many copies of K_{k-1} all sharing the same vertex.

Let $n \geq k, \frac{k}{2}>a \geq 1$. Define the n-vertex $H_{n, k, a}$:
$V\left(H_{n, k, a}\right)=A \cup B \cup C$, where $|A|=a,|B|=n-k+a,|C|=k-2 a$.
$H_{n, k, a}[A \cup C]=K_{k-a}, H_{n, k, a}[A \cup B]=K_{n-k+2 a}-E\left(K_{n-k+a}\right)$ and no edges between B and C.

Figure 1. Graph $H_{11,11,3}$.
Graph $H_{n, k, a}$ has no cycles of length k or greater.
Let

$$
h(n, k, a)=e\left(H_{n, k, a}\right)=\binom{k-a}{2}+a(n-k+a)
$$

Theorem 5.9 (Kopylov, 1977). Let $n \geq k \geq 5$ and $t=\left\lfloor\frac{k-1}{2}\right\rfloor$. If G is an n-vertex 2connected graph with no cycle of length at least k, then

$$
\begin{equation*}
e(G) \leq \max \{h(n, k, 2), h(n, k, t)\} . \tag{4}
\end{equation*}
$$

Lemma 5.10 (Kopylov, 1977). Let $n \geq 3$ and G be a 2 -connected n-vertex graph. Let $x, y \in V(G)$ and P be an x, y-path with m edges. Then

$$
\begin{equation*}
c(G) \geq \min \left\{m+1, d_{G[P]}(x)+d_{G[P]}(y)\right\} \tag{5}
\end{equation*}
$$

Here Lecture 42 ended.

5.1. Proof of Theorem 5.9 modulo Lemma 5.10. Among the counterexamples with n vertices, choose a graph G with the most edges. Then G has the following properties:
(A1) $e(G)>h(n, k, t)=\binom{k-t}{2}+t(n-k+t)$ and $e(G)>h(n, k, 2)=\binom{k-2}{2}+2(n-k+2)$;
(A2) $c(G) \leq k-1 ;$ and
(A3) for each pair $\{x, y\}$ of the vertices in G with $x y \notin E(G), G$ has an x, y-path $P_{x, y}$ with at least $k-1$ edges.

A j-disintegration of G is a consecutive deletion of vertices of degree at most j while it is possible.
(6) If j-disintegration of H deletes all its edges, then $e(H) \leq\binom{ j+1}{2}+j(|V(H)|-j-1)$.

Let G^{\prime} be obtained from G by t-disintegration. If $G^{\prime}=\emptyset$, then by (6),

$$
e(G) \leq\binom{ t+1}{2}+t(n-t-1)=h(n, k, t)
$$

a contradiction to (A1).

So, G^{\prime} is a non-empty graph with $\delta\left(G^{\prime}\right) \geq t+1$. Let $L=V\left(G^{\prime}\right)$ and $\ell=|L|$.
Claim 5.11. $G^{\prime}=K_{\ell}$.
Proof. Suppose $x, y \in V\left(G^{\prime}\right)$ and $x y \notin E\left(G^{\prime}\right)$. By (A3), G has a path $P_{x, y}$ of length at least $k-1$. Let P be a longest path in G with both ends in L and let u and v be its ends. Then the length of P is at least $k-1$. Since P is longest, neither u nor v has neighbors in $L-V(P)$. Thus $d_{G[P]}(u) \geq d_{G^{\prime}}(u) \geq t+1$ and $d_{G[P]}(v) \geq d_{G^{\prime}}(v) \geq t+1$. So by Lemma 5.10,

$$
c(G) \geq \min \{(k-1)+1,(t+1)+(t+1)\}=\min \{k, 2 t+2\}=k,
$$

a contradiction to (A2).
Observe that $t+1 \leq \ell \leq k-2$. Let $G^{\prime \prime}$ be obtained from G by $(k-\ell)$-disintegration, let $V\left(G^{\prime \prime}\right)=M$ and let $m=|M|$. Certainly, $G^{\prime \prime} \supseteq G^{\prime}$. If $G^{\prime \prime}=G^{\prime}$, then

$$
e(G) \leq\binom{\ell}{2}+(k-\ell)(n-k+\ell)=h(n, k, k-\ell)
$$

a contradiction to (A1). Thus $M-L \neq \emptyset$.
Claim 5.12. Every $x \in M-L$ is adjacent to each $y \in L$.
Proof. Suppose $x \in M-L, y \in L$ and $x y \notin E\left(G^{\prime}\right)$. By (A3), G has a path $P_{x, y}$ of length at least $k-1$. Let P be a longest path in G with both ends in M and at least one end in L. Let u and v be its ends such that $v \in L$. Then the length of P is at least $k-1$. Since P is longest, neither u nor v has neighbors in $L-V(P)$. Thus $d_{G[P]}(u) \geq d_{G^{\prime}}(u) \geq(k-\ell)+1$ and $d_{G[P]}(v) \geq d_{G^{\prime}}(v) \geq \ell-1$. So by Lemma 5.10,

$$
c(G) \geq \min \{(k-1)+1,(k-\ell+1)+(\ell-1)\}=\min \{k, k\}=k,
$$

a contradiction to (A2).
But then $\delta\left(G^{\prime \prime}\right) \geq \ell$, and G^{\prime} cannot be the result of t-disintegration of G.

REVIEW OF THE COURSE.

