5. LECTURE NOTES: HAMILTONIAN CYCLES AND CIRCUMFERENCE

A Hamiltonian cycle in a graph G is a cycle passing through all vertices of G. If a graph has a Hamiltonian cycle, then it is also called Hamiltonian.

It is an NP-complete problem to check whether a graph has a Hamiltonian cycle. Here are two quite dense graphs with no such cycles.

Theorem 5.1 (Dirac). Let $n \ge 3$ and G be an n-vertex graph. If $\delta(G) \ge n/2$, then G has a Hamiltonian cycle.

– Here Lecture 40 ended.

Proof 1. Suppose the theorem fails for some $n \geq 3$. Let G be an n-vertex simple graph such that

(a) $\delta(G) \geq n/2$,

(b) G has no Hamiltonian cycle, and

(c) G has the most edges among the simple graphs satisfying (a) and (b).

By (b), $G \neq K_n$. Let $xy \notin E(G)$ and G' = G + xy. By (c), G' has a Hamiltonian cycle C. By (b), $xy \in E(C)$. Rename the vertices of G so that $C = v_1, v_2, \ldots, v_n, v_1, x = v_1$ and $y = v_n$.

Let $S = N(v_1)$ and $T = \{v_{i+1} : v_i v_n \in E(G)\}$.

If there is $1 \leq i \leq n-1$ s. t. $v_i \in S \cap T$, then G has Hamiltonian cycle $v_1, v_2, \ldots, v_i v_n, v_{n_1}, \ldots, v_{i+1}, v_1$, a contradiction.

Hence S and T are disjoint. Moreover, $v_1 \notin S \cup T$.

So $|S| + |T| + 1 \le n$. On the other hand, $|S| = d(x) \ge n/2$ and $|T| = d(y) \ge n/2$. So

 $n/2 + n/2 + 1 \le n,$

a contradiction. \Box

Idea of Proof 2 (Original). In the first step, by looking at a longest path, we greedily find a cycle of length at least 1 + n/2.

In the second step, Dirac considered a lollipop, i.e. a pair (C, P) s.t. C is a cycle and P is a path starting from C.

We maximize |C|, and modulo this maximize |P|.

The end x of P cannot be adjacent to two consecutive vertices of C, and cannot be adjacent to vertices of C close to the start of P. \Box

In Proof 1, we actually did not use $\delta(G) \ge n/2$ in full, we needed $|S| + |T| \ge n$. Let $\sigma_2(G) = \min_{xy \notin E(G)} d(x) + d(y)$. The same Proof 1 gives us

Theorem 5.2 (Ore). Let $n \ge 3$ and G be an n-vertex simple graph. If $\sigma_2(G) \ge n$, then G has a Hamiltonian cycle.

A slight modification of Proof 1 gives the following refinement.

Theorem 5.3 (Pósa). Let $n \ge 3$, $k \ge 0$ and let G be an n-vertex graph with $\sigma_2(G) \ge n+k$. Then for each linear forest $F \subset G$ with k edges G has a Hamiltonian cycle containing F.

Proof. Suppose the theorem fails for some n. Let G be an n-vertex simple graph such that

(a) $\sigma_2(G) \ge n+k$

(b) for some linear forest $F \subset G$ with k edges, G has no Hamiltonian cycle containing F, and

(c) G has the most edges among the simple graphs satisfying (a) and (b).

By (b), $G \neq K_n$. Let $xy \notin E(G)$ and G' = G + xy. By (c), G' has a Hamiltonian cycle C containing F.

By (b), $xy \in E(C)$. Rename the vertices of G so that $C = v_1, v_2, \ldots, v_n, v_1, x = v_1$ and $y = v_n$.

Let $S = N(v_1)$ and $T = \{v_{i+1} : v_i v_n \in E(G) \text{ and } v_i v_{i+1} \notin E(F)\}.$

If there is $1 \leq i \leq n-1$ s. t. $v_i \in S \cap T$, then G has Hamiltonian cycle

 $v_1, v_2, \ldots, v_i v_n, v_{n_1}, \ldots, v_{i+1}, v_1$ containing F, a contradiction.

Therefore, S and T are disjoint. Moreover, $v_1 \notin S \cup T$.

Hence $|S| + |T| + 1 \le n$. On the other hand, |S| = d(x) - |E(F)| = d(x) - k and |T| = d(y). So $d(x) + d(y) - k + 1 \le n$, a contradiction. \Box

Corollary 5.4. Let $n \ge 3$ and let G be an n-vertex graph with $\sigma_2(G) \ge n+1$. Then G is hamiltonian-connected.

Corollary 5.5. Let $n \ge 3$ and let G be an n-vertex graph. Let $x, y \in V(G)$ and $xy \notin E(G)$. Suppose $d(x) + d(y) \ge n$. Then G has a Hamiltonian cycle iff G + xy has a Hamiltonian cycle.

Notion of *n*-closure!

Theorem 5.6 (Chvátal). Let $n \ge 3$ and let G be a graph with vertex set $V = \{v_1, \ldots, v_n\}$. Suppose that $d(v_1) \le d(v_2) \le \ldots \le d(v_n)$ and for every i < n/2

(1) $d(v_i) > i \quad \text{or} \quad d(v_{n-i}) \ge n-i.$

Then G has a Hamiltonian cycle.

Sharpness example: $\overline{K_i}$ — K_i — K_{n-2i} .

– Here Lecture 41 ended.

Proof. Suppose the theorem fails for some $n \ge 3$. Let G be an n-vertex counter-example with the most edges. By maximality, for each $xy \notin E(G)$ there is a Hamiltonian x, y-path. Choose such a pair (x, y) with maximum d(x) + d(y) and $d(x) \le d(y)$. By Corollary 5.5,

$$d(x) + d(y) \le n - 1$$

Let t = d(x). By (2), $t \le (n-1)/2$. Let $P = w_1, w_2, \ldots, w_n$ be a Hamiltonian x, y-path (so $x = w_1, y = w_n$) and $w_{i_1}, w_{i_2}, \ldots, w_{i_t}$ be the neighbors of x on P (picture in class!). Clearly, $i_1 = 2$. By the choice of $(x, y), d(w_{i_j-1}) \le t$ for all $1 \le j \le t$.

Hence $d(v_t) \leq t$, and each of n-t-1 nonneighbors of x has degree $\leq d(y)$. Together with x, at least n-t vertices have degree $\leq d(y) \leq n-1-t$. This yields $d(v_{n-t}) \leq n-t-1$, which together with $d(v_t) \leq t$ contradicts (1). \Box

Theorem 5.7 (Chvátal and Erdős). Let $n \ge 3$ and let G be an n-vertex graph. If $\kappa(G) \ge \alpha(G)$, then G has a Hamiltonian cycle.

Sharpness example: $K_{r,r+1}$.

Proof. Suppose $k = \kappa(G)$ and $C = v_1, \ldots, v_t$ is a longest cycle in G. Let H be a component of G - V(C) and let $S = \{v_{i_1}, \ldots, v_{i_s}\} = N(H) \cap V(C)$. Note that S does not contain consecutive vertices on C, and so $s \leq t/2$. Since G is k-connected, $s \geq k$.

Let $S^- = \{v_{j-1} : v_j \in S\}$. If two vertices in S^- are adjacent, then C is not a longest path (picture in class!!). Thus, for any $v \in V(H)$, the set $S^- + v$ is independent, implying $\alpha(G) \ge 1 + |S^-| \ge 1 + s \ge 1 + k$, a contradiction. \Box

Circumference, c(G), the number of vertices in the longest path, p(G). Dirac observed that

(3)
$$c(G) \ge \delta(G) + 1$$
 for every graph G.

We have used this.

Theorem 5.8 (Erdős and Gallai, 1959). Let $n \ge 3$, $k \ge 2$ and let G be an n-vertex graph. (A) If |E(G)| > (k-1)(n-1)/2, then $c(G) \ge k$. (B) If |E(G)| > (k-2)n/2, then $p(G) \ge k$.

Sharpness examples: For (B): many disjoint copies of K_{k-1} . For (A): Many copies of K_{k-1} all sharing the same vertex.

Let $n \ge k$, $\frac{k}{2} > a \ge 1$. Define the *n*-vertex $H_{n,k,a}$: $V(H_{n,k,a}) = A \cup B \cup C$, where |A| = a, |B| = n - k + a, |C| = k - 2a. $H_{n,k,a}[A \cup C] = K_{k-a}$, $H_{n,k,a}[A \cup B] = K_{n-k+2a} - E(K_{n-k+a})$ and no edges between B and C.

FIGURE 1. Graph $H_{11,11,3}$.

Graph $H_{n,k,a}$ has no cycles of length k or greater. Let

$$h(n,k,a) = e(H_{n,k,a}) = \binom{k-a}{2} + a(n-k+a).$$

Theorem 5.9 (Kopylov, 1977). Let $n \ge k \ge 5$ and $t = \lfloor \frac{k-1}{2} \rfloor$. If G is an n-vertex 2-connected graph with no cycle of length at least k, then

(4)
$$e(G) \le \max\{h(n,k,2), h(n,k,t)\}.$$

Lemma 5.10 (Kopylov, 1977). Let $n \ge 3$ and G be a 2-connected n-vertex graph. Let $x, y \in V(G)$ and P be an x, y-path with m edges. Then

(5)
$$c(G) \ge \min\{m+1, d_{G[P]}(x) + d_{G[P]}(y)\}.$$

- Here Lecture 42 ended.

5.1. Proof of Theorem 5.9 modulo Lemma 5.10. Among the counterexamples with n vertices, choose a graph G with the most edges. Then G has the following properties:

(A1)
$$e(G) > h(n, k, t) = \binom{k-t}{2} + t(n-k+t)$$
 and $e(G) > h(n, k, 2) = \binom{k-2}{2} + 2(n-k+2)$;
(A2) $e(G) < k-1$; and

(A3) for each pair $\{x, y\}$ of the vertices in G with $xy \notin E(G)$, G has an x, y-path $P_{x,y}$ with at least k-1 edges.

A *j*-disintegration of G is a consecutive deletion of vertices of degree at most j while it is possible.

(6) If *j*-disintegration of *H* deletes all its edges, then $e(H) \leq {\binom{j+1}{2}} + j(|V(H)| - j - 1)$.

Let G' be obtained from G by t-disintegration. If $G' = \emptyset$, then by (6),

$$e(G) \le \binom{t+1}{2} + t(n-t-1) = h(n,k,t),$$

a contradiction to (A1).

So, G' is a non-empty graph with $\delta(G') \ge t+1$. Let L = V(G') and $\ell = |L|$.

Claim 5.11. $G' = K_{\ell}$.

Proof. Suppose $x, y \in V(G')$ and $xy \notin E(G')$. By (A3), G has a path $P_{x,y}$ of length at least k-1. Let P be a longest path in G with both ends in L and let u and v be its ends. Then the length of P is at least k-1. Since P is longest, neither u nor v has neighbors in L-V(P). Thus $d_{G[P]}(u) \geq d_{G'}(u) \geq t+1$ and $d_{G[P]}(v) \geq d_{G'}(v) \geq t+1$. So by Lemma 5.10,

$$c(G) \ge \min\{(k-1)+1, (t+1)+(t+1)\} = \min\{k, 2t+2\} = k$$

a contradiction to (A2). \Box

Observe that $t + 1 \leq \ell \leq k - 2$. Let G'' be obtained from G by $(k - \ell)$ -disintegration, let V(G'') = M and let m = |M|. Certainly, $G'' \supseteq G'$. If G'' = G', then

$$e(G) \le \binom{\ell}{2} + (k-\ell)(n-k+\ell) = h(n,k,k-\ell),$$

a contradiction to (A1). Thus $M - L \neq \emptyset$.

Claim 5.12. Every $x \in M - L$ is adjacent to each $y \in L$.

Proof. Suppose $x \in M - L$, $y \in L$ and $xy \notin E(G')$. By (A3), G has a path $P_{x,y}$ of length at least k - 1. Let P be a longest path in G with both ends in M and at least one end in L. Let u and v be its ends such that $v \in L$. Then the length of P is at least k - 1. Since P is longest, neither u nor v has neighbors in L - V(P). Thus $d_{G[P]}(u) \ge d_{G'}(u) \ge (k - \ell) + 1$ and $d_{G[P]}(v) \ge d_{G'}(v) \ge \ell - 1$. So by Lemma 5.10,

$$c(G) \ge \min\{(k-1) + 1, (k-\ell+1) + (\ell-1)\} = \min\{k,k\} = k,$$
 a contradiction to (A2). \Box

But then $\delta(G'') \ge \ell$, and G' cannot be the result of t-disintegration of G. \Box

REVIEW OF THE COURSE.