
5. Lecture notes: Hamiltonian cycles and circumference

A Hamiltonian cycle in a graph G is a cycle passing through all vertices of G. If a graph
has a Hamiltonian cycle, then it is also called Hamiltonian.

It is an NP-complete problem to check whether a graph has a Hamiltonian cycle. Here
are two quite dense graphs with no such cycles.

Theorem 5.1 (Dirac). Let n ≥ 3 and G be an n-vertex graph. If δ(G) ≥ n/2, then G has
a Hamiltonian cycle.

——————————– Here Lecture 40 ended.

Proof 1. Suppose the theorem fails for some n ≥ 3. Let G be an n-vertex simple graph
such that

(a) δ(G) ≥ n/2,
(b) G has no Hamiltonian cycle, and
(c) G has the most edges among the simple graphs satisfying (a) and (b).
By (b), G ̸= Kn. Let xy /∈ E(G) and G′ = G+ xy. By (c), G′ has a Hamiltonian cycle C.
By (b), xy ∈ E(C). Rename the vertices of G so that C = v1, v2, . . . , vn, v1, x = v1 and

y = vn.

Let S = N(v1) and T = {vi+1 : vivn ∈ E(G)}.
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If there is 1 ≤ i ≤ n− 1 s. t. vi ∈ S ∩ T , then G has Hamiltonian cycle
v1, v2, . . . , vivn, vn1 , . . . , vi+1, v1, a contradiction.

Hence S and T are disjoint. Moreover, v1 /∈ S ∪ T .
So |S|+ |T |+ 1 ≤ n. On the other hand, |S| = d(x) ≥ n/2 and |T | = d(y) ≥ n/2. So

n/2 + n/2 + 1 ≤ n,

a contradiction. □

Idea of Proof 2 (Original). In the first step, by looking at a longest path, we greedily
find a cycle of length at least 1 + n/2.

In the second step, Dirac considered a lollipop, i.e. a pair (C,P ) s.t. C is a cycle and P
is a path starting from C.
We maximize |C|, and modulo this maximize |P |.
The end x of P cannot be adjacent to two consecutive vertices of C, and cannot be adja-

cent to vertices of C close to the start of P . □

In Proof 1, we actually did not use δ(G) ≥ n/2 in full, we needed |S|+ |T | ≥ n.
Let σ2(G) = minxy/∈E(G) d(x) + d(y). The same Proof 1 gives us

Theorem 5.2 (Ore). Let n ≥ 3 and G be an n-vertex simple graph. If σ2(G) ≥ n, then G
has a Hamiltonian cycle.

A slight modification of Proof 1 gives the following refinement.

Theorem 5.3 (Pósa). Let n ≥ 3, k ≥ 0 and let G be an n-vertex graph with σ2(G) ≥ n+ k.
Then for each linear forest F ⊂ G with k edges G has a Hamiltonian cycle containing F .

Proof. Suppose the theorem fails for some n. Let G be an n-vertex simple graph such
that

(a) σ2(G) ≥ n+ k
(b) for some linear forest F ⊂ G with k edges, G has no Hamiltonian cycle containing F ,

and
(c) G has the most edges among the simple graphs satisfying (a) and (b).
By (b), G ̸= Kn. Let xy /∈ E(G) and G′ = G+ xy. By (c), G′ has a Hamiltonian cycle C

containing F .
By (b), xy ∈ E(C). Rename the vertices of G so that C = v1, v2, . . . , vn, v1, x = v1 and

y = vn.
Let S = N(v1) and T = {vi+1 : vivn ∈ E(G) and vivi+1 /∈ E(F )}.
If there is 1 ≤ i ≤ n− 1 s. t. vi ∈ S ∩ T , then G has Hamiltonian cycle

v1, v2, . . . , vivn, vn1 , . . . , vi+1, v1 containing F , a contradiction.
Therefore, S and T are disjoint. Moreover, v1 /∈ S ∪ T .
Hence |S|+|T |+1 ≤ n. On the other hand, |S| = d(x)−|E(F )| = d(x)−k and |T | = d(y).

So d(x) + d(y)− k + 1 ≤ n, a contradiction. □

Corollary 5.4. Let n ≥ 3 and let G be an n-vertex graph with σ2(G) ≥ n + 1. Then G is
hamiltonian-connected.
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Corollary 5.5. Let n ≥ 3 and let G be an n-vertex graph. Let x, y ∈ V (G) and xy /∈ E(G).
Suppose d(x) + d(y) ≥ n. Then G has a Hamiltonian cycle iff G + xy has a Hamiltonian
cycle.

Notion of n-closure!

Theorem 5.6 (Chvátal). Let n ≥ 3 and let G be a graph with vertex set V = {v1, . . . , vn}.
Suppose that d(v1) ≤ d(v2) ≤ . . . ≤ d(vn) and for every i < n/2

(1) d(vi) > i or d(vn−i) ≥ n− i.

Then G has a Hamiltonian cycle.

Sharpness example: Ki—Ki—Kn−2i.

——————————– Here Lecture 41 ended.
Proof. Suppose the theorem fails for some n ≥ 3. Let G be an n-vertex counter-example

with the most edges. By maximality, for each xy /∈ E(G) there is a Hamiltonian x, y-path.
Choose such a pair (x, y) with maximum d(x) + d(y) and d(x) ≤ d(y). By Corollary 5.5,

(2) d(x) + d(y) ≤ n− 1.

Let t = d(x). By (2), t ≤ (n− 1)/2. Let P = w1, w2, . . . , wn be a Hamiltonian x, y-path (so
x = w1, y = wn) and wi1 , wi2 , . . . , wit be the neighbors of x on P (picture in class!). Clearly,
i1 = 2. By the choice of (x, y), d(wij−1) ≤ t for all 1 ≤ j ≤ t.
Hence d(vt) ≤ t, and each of n− t−1 nonneighbors of x has degree ≤ d(y). Together with

x, at least n − t vertices have degree ≤ d(y) ≤ n − 1 − t. This yields d(vn−t) ≤ n − t − 1,
which together with d(vt) ≤ t contradicts (1). □

Theorem 5.7 (Chvátal and Erdős). Let n ≥ 3 and let G be an n-vertex graph. If κ(G) ≥
α(G), then G has a Hamiltonian cycle.

Sharpness example: Kr,r+1.

Proof. Suppose k = κ(G) and C = v1, . . . , vt is a longest cycle in G. Let H be a
component of G − V (C) and let S = {vi1 , . . . , vis} = N(H) ∩ V (C). Note that S does not
contain consecutive vertices on C, and so s ≤ t/2. Since G is k-connected, s ≥ k.
Let S− = {vj−1 : vj ∈ S}. If two vertices in S− are adjacent, then C is not a longest

path (picture in class!!). Thus, for any v ∈ V (H), the set S− + v is independent, implying
α(G) ≥ 1 + |S−| ≥ 1 + s ≥ 1 + k, a contradiction. □

Circumference, c(G), the number of vertices in the longest path, p(G).
Dirac observed that

(3) c(G) ≥ δ(G) + 1 for every graph G.

We have used this.

Theorem 5.8 (Erdős and Gallai, 1959). Let n ≥ 3, k ≥ 2 and let G be an n-vertex graph.
(A) If |E(G)| > (k − 1)(n− 1)/2, then c(G) ≥ k.
(B) If |E(G)| > (k − 2)n/2, then p(G) ≥ k.
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Sharpness examples: For (B): many disjoint copies of Kk−1. For (A): Many copies of
Kk−1 all sharing the same vertex.

Let n ≥ k, k
2
> a ≥ 1. Define the n-vertex Hn,k,a:

V (Hn,k,a) = A ∪B ∪ C, where |A| = a, |B| = n− k + a, |C| = k − 2a.
Hn,k,a[A∪C] = Kk−a, Hn,k,a[A∪B] = Kn−k+2a−E(Kn−k+a) and no edges between B and

C.

Figure 1. Graph H11,11,3.

Graph Hn,k,a has no cycles of length k or greater.
Let

h(n, k, a) = e(Hn,k,a) =

(
k − a

2

)
+ a(n− k + a).

Theorem 5.9 (Kopylov, 1977). Let n ≥ k ≥ 5 and t = ⌊k−1
2
⌋. If G is an n-vertex 2-

connected graph with no cycle of length at least k, then

(4) e(G) ≤ max{h(n, k, 2), h(n, k, t)}.

Lemma 5.10 (Kopylov, 1977). Let n ≥ 3 and G be a 2-connected n-vertex graph. Let
x, y ∈ V (G) and P be an x, y-path with m edges. Then

(5) c(G) ≥ min{m+ 1, dG[P ](x) + dG[P ](y)}.

——————————– Here Lecture 42 ended.

5.1. Proof of Theorem 5.9 modulo Lemma 5.10. Among the counterexamples with n
vertices, choose a graph G with the most edges. Then G has the following properties:

(A1) e(G) > h(n, k, t) =
(
k−t
2

)
+ t(n− k+ t) and e(G) > h(n, k, 2) =

(
k−2
2

)
+ 2(n− k+ 2);

(A2) c(G) ≤ k − 1; and

(A3) for each pair {x, y} of the vertices in G with xy /∈ E(G), G has an x, y-path Px,y

with at least k − 1 edges.

A j-disintegration of G is a consecutive deletion of vertices of degree at most j while it is
possible.

(6) If j-disintegration of H deletes all its edges, then e(H) ≤
(
j+1
2

)
+ j(|V (H)| − j − 1).

Let G′ be obtained from G by t-disintegration. If G′ = ∅, then by (6),

e(G) ≤
(
t+ 1

2

)
+ t(n− t− 1) = h(n, k, t),

a contradiction to (A1).
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So, G′ is a non-empty graph with δ(G′) ≥ t+ 1. Let L = V (G′) and ℓ = |L|.

Claim 5.11. G′ = Kℓ.

Proof. Suppose x, y ∈ V (G′) and xy /∈ E(G′). By (A3), G has a path Px,y of length at
least k − 1. Let P be a longest path in G with both ends in L and let u and v be its ends.
Then the length of P is at least k − 1. Since P is longest, neither u nor v has neighbors in
L−V (P ). Thus dG[P ](u) ≥ dG′(u) ≥ t+1 and dG[P ](v) ≥ dG′(v) ≥ t+1. So by Lemma 5.10,

c(G) ≥ min{(k − 1) + 1, (t+ 1) + (t+ 1)} = min{k, 2t+ 2} = k,

a contradiction to (A2). □

Observe that t+ 1 ≤ ℓ ≤ k − 2. Let G′′ be obtained from G by (k − ℓ)-disintegration, let
V (G′′) = M and let m = |M |. Certainly, G′′ ⊇ G′. If G′′ = G′, then

e(G) ≤
(
ℓ

2

)
+ (k − ℓ)(n− k + ℓ) = h(n, k, k − ℓ),

a contradiction to (A1). Thus M − L ̸= ∅.

Claim 5.12. Every x ∈ M − L is adjacent to each y ∈ L.

Proof. Suppose x ∈ M −L, y ∈ L and xy /∈ E(G′). By (A3), G has a path Px,y of length
at least k − 1. Let P be a longest path in G with both ends in M and at least one end in
L. Let u and v be its ends such that v ∈ L. Then the length of P is at least k − 1. Since P
is longest, neither u nor v has neighbors in L− V (P ). Thus dG[P ](u) ≥ dG′(u) ≥ (k − ℓ) + 1
and dG[P ](v) ≥ dG′(v) ≥ ℓ− 1. So by Lemma 5.10,

c(G) ≥ min{(k − 1) + 1, (k − ℓ+ 1) + (ℓ− 1)} = min{k, k} = k,

a contradiction to (A2). □

But then δ(G′′) ≥ ℓ, and G′ cannot be the result of t-disintegration of G. □

REVIEW OF THE COURSE.
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