• Z. Furedi, A. Kostochka and M. Kumbhat, Minimal abundant packings and choosability with separation, submitted, [ arXiv version ]

  • Z. Furedi and A. Kostochka, Turan number for bushes, submitted, [ arXiv version ]

  • A. Kostochka, M. Nahvi, D. West and D. Zirlin, Trees with at least 6l+11 vertices are l-reconstructible, submitted, [ arXiv version ]

  • H. A. Kierstead, A. Kostochka and Z. Xiang, Equitable list coloring of planar graphs with given maximum degree, submitted, [ arXiv version ]

  • A. Kostochka, J. Xu and X. Zhu, Sparse critical graphs for defective (1,3)-coloring, submitted [ arXiv version ]

  • A. Kostochka, R. Luo and G. McCourt, A hypergraph analog of Dirac's Theorem for long cycles in 2-connected graphs, II: Large uniformities, submitted [ arXiv version ]

  • A. Kostochka and J. Xu, Sparse critical graphs for defective DP-colorings, to appear in Discrete Mathematics, [ arXiv version ]

  • A. Kostochka, D. Lin and Z. Xiang, Equitable coloring of planar graphs with maximum degree at least eight, to appear in Discrete Mathematics, [ arXiv version ]

  • A. Kostochka, R. Luo and G. McCourt, On a property of 2-connected graphs and Dirac's Theorem, submitted [ arXiv version ]

  • A. Kostochka, R. Luo and G. McCourt, A hypergraph analog of Dirac's Theorem for long cycles in 2-connected graphs, to appear in Combinatorica, [ arXiv version ]

  • A. Kostochka, D. West and Z. Xiang, Sharp lower bounds for the number of maximum matchings in bipartite multigraphs, to appear in J. Graph Theory, [ arXiv version ]

  • A. Kostochka, R. Luo and G. McCourt, Dirac's Theorem for hamiltonian Berge cycles in uniform hypergraphs, submitted [ arXiv version ]

  • A. Kostochka, M. Nahvi, D. West and D. Zirlin, Acyclic graphs with at least 2l+1 vertices are l-recognizable, to appear in J. Graph Theory, [ arXiv version ]

  • A. Kostochka, T. Schweser and M. Stiebitz, Generalized DP-colorings of graphs, Discrete Math. 346 (2023), no. 11, Paper No. 113186, 20 pp.

  • A. Kostochka, R. Luo and G. McCourt, Minimum degree ensuring that a hypergraph is hamiltonian-connected, European J. Comb. 114 (2023), Paper No. 103782, 18 pp. [ arXiv version ]

  • S. Englsih, A. Kostochka and D. Zirlin, Saturation for the 3-uniform loose 3-cycle, Discrete Math 346 (2023), no. 11, Paper No. 113504, 25 pp. [ arXiv version ]

  • Z. Furedi, T. Jiang, A. V. Kostochka, D. Mubayi and J. Verstraete, Extremal problems for hypergraph blowups of trees, SIDMA 37 (2023), 2397--2416, [ arXiv version ]

  • A. Kostochka, M. Nahvi, D. B. West and D. Zirlin, 3-Reconstructibility of rooted trees, Pure and Appl. Math. Quarterly, 18 (2022), no. 6, 2479--2509.

  • J. Kim, A. Kostochka, S. O, Y. Shi and Z. Wang, A sharp lower bound for the spectral radius in $K_4$-saturated graphs, Discrete Math. 346 (2023), no. 2, Paper No. 113231, 5 pp.

  • A. Kostochka, R. Luo and S. Shan, Towards the Small Quasi-Kernel Conjecture, Electronic J. Comb. 29 (2022), Paper No. 3.49, 6 pp. [ arXiv version ]

  • A. Kostochka, M. Lavrov, R. Luo and D. Zirlin, Longest cycles in 3-connected hypergraphs and bipartite graphs, J. Graph Theory 99 (2022), 758--782. [ arXiv version ]

  • J. Balogh, A. Kostochka, M. Lavrov and X. Liu, Monochromatic connected matchings in 2-edge-colored multipartite graphs, J. Graph Theory 100 (2022), 578--607. [ arXiv version ]

  • J. Balogh, A. Kostochka, M. Lavrov and X. Liu, Monochromatic paths and cycles in 2-edge-colored graphs with large minimum degree, CPC 31 (2022), 109--122 [ arXiv version ]

  • Y. Jing, A. Kostochka, F. Ma and J. Xu, Defective DP-colorings of sparse simple graphs, Discrete Math. 345 (2022), no. 1, Paper No. 112637, 14 pp. [ arXiv version ]

  • A. Kostochka, G. McCourt and M. Nahvi, On sizes of 1-cross intersecting set pair systems, Siberian Math. J., 62 (2021), No 5, 842 - 849. [ arXiv version ]

  • Z. Furedi, T. Jiang, A. V. Kostochka, D. Mubayi and J. Verstraete, Extremal problems on ordered and convex geometric hypergraphs, Canad. J. Math. 73 (2021), 1648-1666. [ arXiv version ]

  • Z. Furedi, A. V. Kostochka and R. Luo, Avoiding long Berge cycles II, exact bounds for all n, J. of Comb. 12 (2021), no. 2, 247-268. [ arXiv version ]

  • A. Kostochka and D. B. West, On reconstruction of graphs from the multiset of subgraphs obtained by deleting l vertices, IEEE Transactions on Information Theory 67 (2021), no. 6, part 1, 3278-3286. [ arXiv version ]

  • A. Kostochka and X. Liu, Packing (1,1,2,4)-coloring of subcubic outerplanar graphs, Discrete Appl. Math. 302 (2021), 8-15. [ arXiv version ]

  • A. Kostochka, A. Raspaud and J. Xu, Injective edge-coloring of graphs with given maximum degree. European J. Combin. 96 (2021), Paper No. 103355, 12 pp. [ arXiv version ]

  • A. Kostochka, M. Lavrov, R. Luo and D. Zirlin, Conditions for a bigraph to be super-cyclic, Electron. J. Combin. 28 (2021), no. 1, Paper No. 1.2, 19 pp. [ arXiv version ]

  • A. V. Kostochka, A. Raspaud, B. Toft, D. B. West and D. Zirlin, Cut-edges and regular factors in regular graphs of odd degree, Graphs Combin. 37 (2021), no. 1, 199-207. [ arXiv version ]

  • Y. Jing, A. Kostochka, F. Ma, P. Sittitrai and J. Xu, Defective DP-colorings of sparse multigraphs, European J. Combin. 93 (2021), Paper No. 103267, 20 pp. [ arXiv version ]

  • A. Kostochka, M. Nahvi, D. B. West and D. Zirlin, 3-Regular Graphs Are 2-Reconstructible, European J. Comb. 91 (2021), Paper No. 103216, 10 pp. [ arXiv version ]

  • A. Kostochka, R. Luo and D. Zirlin, Super-pancyclic hypergraphs and bipartite graphs, J. Combin. Theory Ser. B 145 (2020), 450-465. [ arXiv version ]

  • J. Kim, S.-J. Kim, A. Kostochka and S. O, K_{r+1}-saturated graphs with small spectral radius, Discrete Math. 343 (2020), no. 11, 112068, 4 pp. [ arXiv version ]

  • I. Choi, R. Kim, A. Kostochka, B. Park and D. West, Largest 2-regular subgraphs in 3-regular graphs, Graphs and Combinatorics 35 (2019), 805--813. [ arXiv version ]

  • A. Kostochka, M. Nahvi, D. B. West and D. Zirlin, Degree lists and connectedness are 3-reconstructible for graphs with at least seven vertices, Graphs and Comb. 36 (2020), 491--501. [ arXiv version ]

  • J. Balogh, A. Kostochka, M. Lavrov and X. Liu, Long monochromatic paths and cycles in 2-edge-colored multipartite graphs, Moscow J. of Comb. Num. Theory, 9 (2020), no. 1, 55--100. [ arXiv version ]

  • Z. Furedi, T. Jiang, A. V. Kostochka, D. Mubayi and J. Verstraete, Tight paths in convex geometric hypergraphs, Advances in Combinatorics, 2020: 1, 14pp. [ arXiv version ]

  • Z. Furedi, A. V. Kostochka and R. Luo, Berge cycles in non-uniform hypergraphs, Electr. J Comb. 27 (2020), no. 3, Paper No. 3.9, 13 pp. [ arXiv version ]

  • Z. Furedi, A. V. Kostochka and R. Luo, On 2-connected hypergraphs with no long cycles, Electr. J Comb. 26 (2019), no. 4, Paper 4.31, 36 pp. [ arXiv version ]

  • Z. Furedi, A. V. Kostochka, D. Mubayi and J. Verstraete, Ordered and convex geometric trees with linear extremal function, {\em Discrete and Comp. Geometry}, DOI 10.1007/s00454-019-00149-z, [ arXiv version ]

  • A. Bernshteyn and A. Kostochka, DP-Colorings of Hypergraphs, European J. Comb. 78 (2019), 134--146 [ arXiv version ]

  • A. V. Kostochka and R. Luo, On r-uniform hypergraphs with circumference less than r, Discrete Appl. Math. 276 (2020), 69--91 [ arXiv version ]

  • Z. Furedi, A. V. Kostochka and R. Luo, A variation of a theorem by Pósa, Discrete Mathematics 342 (2019), 1919--1923 [ arXiv version ]

  • Z. Furedi, A. V. Kostochka and R. Luo, Avoiding long Berge cycles, JCTB 137 (2019), 55--64 [ arXiv version ]

  • A. Bernshteyn, A. Kostochka and X. Zhu, Fractional DP-Colorings of Sparse Graphs, J. Graph Theory, 93 (2020), 203--221 [ arXiv version ]

  • J. Balogh, A. V. Kostochka, and X. Liu, Packing chromatic number of subdivisions of cubic graphs, Graphs and Combinatorics 78 (2019), 134--146 [ arXiv version ]

  • J. Balogh, A. V. Kostochka, and X. Liu, Cubic graphs with small independence ratio, Electronic J. Combinatorics 26 (2019), no. 1, Paper 1.43, 22 pp. [ arXiv version ]

  • Z. Furedi, T. Jiang, A. V. Kostochka, D. Mubayi and J. Verstraete, Hypergraphs not containing a tight tree with a bounded trunk II: 3-trees with a trunk of size 2, Discrete Appl. Mathematics 276 (2020), 50--59 [ arXiv version ]

  • Z. Furedi, T. Jiang, A. V. Kostochka, D. Mubayi and J. Verstraete, Hypergraphs not containing a tight tree with a bounded trunk, SIDMA 33 (2019), 862--873 [ arXiv version ]

  • A. V. Kostochka, X. Liu, R. Machado and O. Milenkovic, Directed Intersection Representations and the Information Content of Digraphs, 2019 IEEE International Symposium on Information Theory (ISIT)}, Paris, France, 2019, pp. 1477-1481. [ arXiv version ]

  • Z. Furedi, A. V. Kostochka, R. Luo and J. Verstraete, Stability in the Erdos--Gallai Theorem on cycles and paths, II, Discrete Math. 341 (2018), 1253--1263. [ arXiv version ]

  • A. Bernshteyn and A. Kostochka, On differences between DP-coloring and list coloring, Siberian Advances in Mathematics 21 (2018), No 2, 62--71 (in Russian), DOI: 10.17377/mattrudy.2018.21.202 [ arXiv version ]

  • A. V. Kostochka and M. Yancey, A Brooks-type result for sparse critical graphs, Combinatorica 38 (2018), 887--934. [pdf ]

  • S. Kerdjoudj, A. V. Kostochka and A. Raspaud, List star edge coloring of subcubic graphs, Discuss. Math. - Graph Theory 38 (2018), 1037--1054. [pdf ]

  • H.A. Kierstead, A. V. Kostochka, T. Molla and D. Yager, An algorithmic answer to the Ore-type version of Dirac's question on disjoint cycles, Springer Optimization and Its Applications, V. 139, Springer 2018, 149--168. [pdf ]

  • Z. Furedi, A. V. Kostochka, and R. Luo, Extensions of a theorem of Erdos on nonhamiltonian graphs, J. Graph Theory 89 (2018), 176--193. [pdf ]

  • H. A. Kierstead, A. V. Kostochka, and A. McConvey, A sharp Dirac-Erdos type bound for large graphs, CPC 27 (2018), 387--397. [pdf ]

  • N. Alon, A. V. Kostochka, and C. Shikhelman, Many cliques in H-free subgraphs of random graphs, J. of Combinatorics 9 (2018), 567--597. [pdf ]

  • A. Bernshteyn and A. Kostochka, Sharp Dirac's Theorem for DP-Critical Graphs, J. Graph Theory 88 (2018), 521--546. [pdf ]

  • A. Bernshteyn, A. Kostochka and S. Pron, On DP-coloring of graphs and multigraphs, Sib Math J. 58 (2017), No 1, 28--36. [pdf ]

  • J. Balogh, A. V. Kostochka, and X. Liu, Packing chromatic number of subcubic graphs, Discrete Math. 341 (2018), 474--483. [pdf ]

  • I. Choi, J. Kim, A. V. Kostochka, and A. Raspaud, Strong edge-colorings of sparse graphs with large maximum degree, Eur. J. Comb. 67 (2018), 21--39. [pdf ]

  • A. Bernshteyn, A. Kostochka and X. Zhu, DP-colorings of graphs with high chromatic number, European J. Comb. 65 (2017), 122--129. [pdf ]

  • M. Chen, S.-J. Kim, A. Kostochka, D. West, and X. Zhu, Decomposition of Sparse Graphs into Forests: The Nine Dragon Tree Conjecture for k\le2, JCTB 122 (2017), 741--756. [pdf ]

  • Z. Furedi, A. V. Kostochka, and R. Luo, A stability version for a theorem of Erdos on nonhamiltonian graphs, Discrete Math. 340 (2017), 2688--2690. [pdf ]

  • O. V. Borodin, A. Ivanova and A. V. Kostochka, Tight descriptions of 3-paths in normal plane maps, J. Graph Th. 85 (2017), 115--132. [pdf ]

  • H. A. Kierstead, A. V. Kostochka, T. Molla and E. Yeager, Sharpening an Ore-type version of the Corradi-Hajnal Theorem, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 87 (2017), 299--335. [pdf ]

  • A. V. Kostochka and D. Mubayi, The structure of large intersecting families, PAMS 145 (2017), 2311--2321. [pdf ]

  • H. A. Kierstead, A. V. Kostochka, and A. McConvey, Strengthening theorems of Dirac and Erdos on disjoint cycles, J. Graph Th. 85 (2017), 788--802. [pdf ]

  • Z. Furedi, A. V. Kostochka, and J. Verstraete, Stability in the Erdos--Gallai Theorem on cycles and paths, JCTB 121 (2016), 197--228. [pdf ]

  • H. A. Kierstead, A. V. Kostochka, and E. Yeager, The (2k-1)-connected multigraphs with at most k-1 disjoint cycles, Combinatorica 37 (2017), 77--86. [pdf ]

  • N. Alon, A. Kostochka, B. Reiniger, D. West, and X. Zhu, Coloring, sparseness, and girth, Israel J. Math. 214 (2016), 315--331. [pdf ]

  • J. Kim, A. V. Kostochka, and X. Zhu, Improper coloring of sparse graphs with a given girth, II: Constructions, J. Graph Th. 81 (2016), 403--413. [pdf ]

  • A. V. Kostochka, B. Sudakov and J. Verstraete, Cycles in triangle-free graphs of large chromatic number, Combinatorica. 37 (2017), 481--494. [pdf ]

  • A. Kostochka, A. McConvey, and D. Yager, On a Packing Problem of Alon and Yuster, Discrete Math. 339 (2016), 2785--2792 [pdf ]

  • A. V. Kostochka, D. Mubayi and J. Verstraete, Turan problems and shadows II: trees, JCTB 122 (2017), 457--478. [pdf ]

  • H. A. Kierstead, A. V. Kostochka, and E. Yeager, On the Corradi-Hajnal Theorem and a question of Dirac, JCTB 122 (2017), 121--148. [pdf ]

  • E. Gyori, A. Kostochka, A. McConvey, and D. Yager, Toward Zak's conjecture on graph packing, J. Combinatorics, 7 (2016),307--340. [pdf ]

  • A. V. Kostochka, D. Mubayi and J. Verstraete, Turan problems and shadows III: expansions of graphs, SIDMA 29 (2015), 868--876. [pdf ]

  • A. V. Kostochka, D. Mubayi and J. Verstraete, Turan problems and shadows I: Paths and cycles, JCTA, 129 (2015),57--79. [pdf ]

  • Z. Furedi, A. V. Kostochka and M. Kumbhat, Choosability with separation of complete multipartite graphs and hypergraphs, J. Graph Theory 76 (2014), 129--137. [pdf ]

  • A. V. Kostochka, X. Li, W. Ruksasakchai, M. Santana, T. Wang and G. Yu, Strong chromatic index of subcubic planar multigraphs, Eur. J. Comb. 51 (2016),380--397. [pdf ]

  • A. V. Kostochka and B. Reiniger, The minimum number of edges in a 4-critical graph that is bipartite plus 3 edges, Eur. J. Comb. 46 (2015), 89--94. [pdf ]

  • A. V. Kostochka, A new tool for proving Vizing's Theorem, Discrete Math., 326 (2014), 1-3. [pdf ]

  • J. Kim, A. V. Kostochka, and X. Zhu, Improper coloring of sparse graphs with a given girth, I: (0,1)-colorings of triangle-free graphs, Eur. J. Comb. 42 (2014), 26-48. [pdf ]

  • O. V. Borodin, A. V. Kostochka, B. Lidicky and M. Yancey, Planar 4-critical graphs with four triangles, Eur. J. Comb. 41 (2014), 138--151. [pdf ]

  • E. Gyori, A. Kostochka, A. McConvey, and D. Yager, A list version of graph packing, Discrete Math. 339 (2016), 2178--2185. [pdf ]

  • A. Bernshteyn and A. Kostochka, On the number of edges in a graph with no $(k+1)$-connected subgraphs, Discrete Math. 339 (2016), 682--688. [pdf ]

  • O.V. Borodin, A.O. Ivanova and A. V. Kostochka, Every 3-polytope with minimum degree 5 has a 6-cycle with maximum degree at most 11. Discrete Math. 315 (2014), 128--134. [pdf ]

  • O.V. Borodin, A.O. Ivanova and A. V. Kostochka, Describing faces in plane triangulations, Discrete Math. 319 (2014), 47--61. [pdf ]

  • A. V. Kostochka and J. Nesetril, Adding edges to increase the chromatic number of a graph, CPC (2016), 592--594. [pdf ]

  • H. A. Kierstead and A. V. Kostochka, A refinement of a result of Corradi and Hajnal, Combinatorica 35 (2015), 497--512. [pdf ]

  • A. V. Kostochka and M. Yancey, Ore's Conjecture for k=4 and Gr\" otzsch Theorem, Combinatorica, 34 (2014), 323--329. [pdf ]

  • A. V. Kostochka and M. Yancey, Ore's Conjecture on color-critical graphs is almost true, J. Combin. Theory Ser. B, 109 (2014), 73--101. [pdf ]

  • O. V. Borodin, A. O. Ivanova, T. Jensen, A. V. Kostochka and M. Yancey, Describing 3-paths in normal plane maps, Discrete Math. 313 (2013), 2702--2711. [pdf ]

  • A. V. Kostochka, D. Mubayi and J. Verstraete, Hypergraph Ramsey Numbers: Triangles versus Cliques, JCTA, 120 (2013), 1491--1507. [pdf ]

  • O. V. Borodin, A. V. Kostochka, B. Lidicky and M. Yancey, Short proofs of coloring theorems on planar graphs, Eur. J. Comb. 36 (2014), 314--321. [pdf ]

  • A. V. Kostochka, K_{s,t} minors in (s+t)-chromatic graphs, II, J. Graph Theory, 75 (2014), 377--386. [pdf ]

  • J. Kim and A. V. Kostochka, Maximum hypergraphs without regular subgraphs, Discuss. Math. Graph Theory, 34 (2014), 151--166. [pdf ]

  • A. V. Kostochka and M. Yancey, On coloring of sparse graphs, in: CSR 2013, A.A. Bulatov and A.M. Shur (Eds.): Lecture Notes in Computer Science 7913 (2013), 224--234. [pdf ]

  • K. Jao, A. V. Kostochka and D.B. West, Decomposition of cartesian products of regular graphs into isomorphic trees, J. Combinatorics, 4 (2013), 469--490. [pdf ]

  • J. Balogh, A. V. Kostochka, and A. Raigorodskii, Coloring some finite sets in R^n, Discuss. Math. Graph Theory, 33 (2013), 25--31. [pdf ]

  • J. Balogh, A. V. Kostochka, and A. Treglown, On perfect packings in dense graphs, Electronic J. Comb. 20 (2013), Issue 1, P 57. [pdf ]

  • S.-J. Kim, A. V. Kostochka, D. B. West, H. Wu, and X. Zhu, Decomposition of Sparse Graphs into Forests and a Graph with Bounded Degree, J. Graph Theory 74 (2013), 369--391. [pdf ]

  • P. Hamburger, A. V. Kostochka and C. Stocker, A hypergraph version of a graph packing theorem by Bollobas and Eldridge, J. Graph Theory 74 (2013), 222--235. [pdf ]

  • O.V. Borodin, A. V. Kostochka, and M. Yancey, On 1-improper 2-coloring of sparse graphs, Discrete Math. 313 (2013), 2638--2649. [pdf ]

  • O.V. Borodin and A. V. Kostochka, Defective 2-colorings of sparse graphs, JCTB 104 (2014), 72--80. [pdf ]

  • A. V. Kostochka, D. Mubayi and J. Verstraete, On independent sets in hypergraphs, Random Structures and Algorithms 44 (2014), 224--239. [pdf ]

  • H. A. Kierstead and A. V. Kostochka, Equitable list coloring of graphs with bounded degree, J. Graph Theory 74 (2013), 309--334. [pdf ]

  • A. V. Kostochka, On almost (k-1)-degenerate (k+1)-chromatic graphs and hypergraphs, Discrete Math. 313 (2013), 366--374. [pdf ]

  • A. V. Kostochka and K. Milans, Coloring clean and K_4-free circle graphs, Thirty Essays on Geometric Graph Theory (J. Pach, Ed.), Springer, 2013, 399--414. [pdf ]

  • H. A. Kierstead and A. V. Kostochka, Every 4-colorable graph with maximum degree 4 has an equitable 4-coloring, J. Graph Theory 71 (2012), 31--48. [pdf ]

  • S. Akbari, J. Kim and A. V. Kostochka, Harmonious Coloring of Trees with Large Maximum Degree, Discrete Math. 312 (2012), 1633-1637. [pdf ]

  • A. V. Kostochka, M. Kumbhat and T. Luczak, Conflict-free colorings of uniform hypergraphs with few edges, Combin. Probab. Comput. 21 (2012), 611-622. [pdf ]

  • A. V. Kostochka and G. Yu, Graphs containing every 2-factor, Graphs Comb. 28 (2012), 687-716. [pdf ]

  • A. V. Kostochka, L. Rabern and M. Stiebitz Graphs with chromatic number close to maximum degree, Discrete Math. 312 (2012), 1273-1281. [pdf ]

  • P. Haxell, A. V. Kostochka and S. Thomasse, Packing and Covering Triangles in K_4-free Planar Graphs, Graphs Comb. 28(2012), 653-662. [pdf ]

  • P. Haxell, A. V. Kostochka and S. Thomasse, A stability theorem on fractional covering of triangles by edges, European J. Comb. 33 (2012), 799-806. [pdf ]

  • A. V. Kostochka and N. Prince, K_{s,t}-minors in graphs with given average degree, II, Discrete Math. 312 (2012), 3517-3522. [pdf ]

  • N. Alon and A. V. Kostochka, Dense uniform hypergraphs have high list chromatic number, Discrete Math. 312 (2012), 2119-2125. [pdf ]

  • A. V. Kostochka and M. Yancey, Large Rainbow Matchings in Edge-Colored Graphs, Combin. Probab. Comput. 21 (2012), 255-263 [pdf ]

  • O.V. Borodin and A. V. Kostochka, Vertex decompositions of sparse graphs into an independent set and a subgraph of maximum degree at most 1, Siberian J. of Math. 52 (2011), No 5, 1004-1010 (in Russian). [pdf ]

  • J. Balogh and A. V. Kostochka, Large minors in graphs with a given stability number, Discrete Math. 311 (2011), 2203-2215. [pdf ]

  • N. Alon and A. V. Kostochka, Hypergraph list coloring and Euclidean Ramsey Theory, Random Structures Algorithms 39 (2011), 377-390. [pdf ]

  • T. Boehme, A. V. Kostochka, and A. Thomason, Minors in graphs with high chromatic number, Combin. Probab. Comput. 20 (2011), 513-518. [pdf ]

  • A. V. Kostochka, M. Stiebitz, and D. R. Woodall, Ohba's conjecture for graphs with independence number five, Discrete Math. 311 (2011), 996-1005. [pdf ]

  • A. V. Kostochka and C. Stocker, Graphs with maximum degree 5 are acyclically 7-colorable, Ars Math. Contemp. 4 (2011), 153-164. [pdf ]

  • A. V. Kostochka, M. Kumbhat and V. Rödl, Coloring uniform hypergraphs with small edge degrees, Fete of combinatorics and computer science, 213-238, Bolyai Soc. Math. Stud., 20, János Bolyai Math. Soc., Budapest, 2010. [pdf ]

  • A. V. Kostochka, On K_{s,t} minors in (s+t)-chromatic graphs, J. Graph Theory 65 (2010), 343-350. [pdf ]

  • A. V. Kostochka, D. Kral, J.-S. Sereni and M. Stiebitz, Graphs with bounded tree-width and large odd-girth are almost bipartite, J. Combin. Theory Ser. B 100 (2010), 554-559. [pdf ]

  • T. Boehme, A. V. Kostochka, and A. Thomason, Hadwiger numbers and over-dominating colourings, Discrete Math. 310 (2010), 2662-2665. [pdf ]

  • A. V. Kostochka and N. Prince, Dense graphs have K_{3,t} minors, Discrete Math. 310 (2010), 2637-2654. [pdf ]

  • A. V. Kostochka, P. Pudlak and V. Rodl, Some constructive bounds on Ramsey numbers, J. Combin. Theory Ser. B 100 (2010), 439–445. [pdf ]

  • H. A. Kierstead, A. V. Kostochka, M. Mydlarz, and E. Szemerédi, A fast algorithm for equitable coloring, Combinatorica 30 (2010), 217–224. [pdf ]

  • H. A. Kierstead and A. V. Kostochka, Equitable versus nearly equitable coloring and the Chen-Lih-Wu conjecture, Combinatorica 30 (2010), 201-216. [pdf ]

  • A. V. Kostochka and V. Rödl, Constructions of sparse uniform hypergraphs with high chromatic number, Random Structures Algorithms 36 (2010), 46-56. [pdf ]

  • H. A. Kierstead, A. V. Kostochka, and G. Yu, Extremal graph packing problems: Ore-type versus Dirac-type, Surveys in combinatorics 2009, 113-135, London Math. Soc. Lecture Note Ser., 365, Cambridge Univ. Press, Cambridge, 2009. [pdf ]

  • A. V. Kostochka and C. Stocker, A new bound on the domination number of connected cubic graphs, Sib. Elektron. Mat. Izv. 6 (2009), 465-504. [pdf ]

  • A. V. Kostochka, L. Ozkahya, and D. R. Woodall, A Brooks-type bound for squares of K_4-minor-free graphs, Discrete Math. 309 (2009), 6572-6584. [pdf ]

  • A. V. Kostochka and M. Kumbhat, Coloring uniform hypergraphs with few edges, Random Structures Algorithms 35 (2009), 348-368. [pdf ]

  • H. A. Kierstead and A. V. Kostochka, Efficient graph packing via game colouring, Combin. Probab. Comput. 18 (2009), 765-774. [pdf ]

  • O.V. Borodin, A. O. Ivanova, A. V. Kostochka, and N. N. Sheikh, Decompositions of quadrangle-free planar graphs, Discuss. Math. Graph Theory 29 (2009), 87-99. [pdf ]

  • J. Balogh, A. V. Kostochka, N. Prince and M. Stiebitz, The Erdős-Lovász Tihany conjecture for quasi-line graphs, Discrete Math. 309 (2009), no. 12, 3985-3991. [pdf ]

  • N. Alon, J. Balogh, A. V. Kostochka, and W. Samotij, Sizes of induced subgraphs of Ramsey graphs, Combin. Probab. Comput. 18 (2009), 459-476. [pdf ]

  • T. Boehme and A. V. Kostochka, Many Disjoint Dense Subgraphs versus Large k-connected Subgraphs in Large Graphs with Given Edge Density, Discrete Math. 309 (2009), 997-1000. [pdf ]

  • A. V. Kostochka and B.Y. Stodolsky, An upper bound on the domination number of n-vertex connected cubic graphs, Discrete Math. 309 (2009), 1142-1162. [pdf ]

  • N. Alon and A. V. Kostochka, Induced subgraphs with distinct sizes, Random Structures Algorithms 34 (2009), 45-53. [pdf ]

  • O.V. Borodin, A. O. Ivanova, A. V. Kostochka, and N. N. Sheikh, Planar graphs decomposable into a forest and a matching, Discrete Math. 309 (2009), 277-279. [pdf ]

  • H. A. Kierstead and A. V. Kostochka, Ore-type versions of Brooks' theorem, J. Combin. Theory Ser. B 99 (2009), 298-305. [pdf ]

  • A. V. Kostochka and G. Yu, Ore-type conditions implying 2-factors consisting of short cycles, Discrete Math. 309 (2009), 762-4771. [pdf ]

  • O.V. Borodin, A. V. Kostochka, N. N. Sheikh, and G. Yu, M-degrees of quadrangle-free planar graphs. J. Graph Theory 60 (2009), 80-85. [pdf ]

  • O.V. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka, and D. B. West, Circular (5,2)-coloring of sparse graphs. Sib. Elektron. Mat. Izv. 5 (2008), 417-426.

  • A. V. Kostochka and D. Mubayi, When is an almost monochromatic K_4 guaranteed? Combin. Probab. Comput. 17 (2008), 823-830. [pdf ]

  • A. V. Kostochka and G. Yu, Packing of graphs with small product of sizes, J. Combin. Theory Ser. B 98 (2008), 1411-1415. [pdf ]

  • H. Kaul, A. V. Kostochka, and G. Yu, On a graph packing conjecture by Bollobas, Eldridge and Catlin, Combinatorica 28 (2008), 469-485. [pdf ]

  • L. S. Chandran, A. V. Kostochka, and J. K. Raju, Hadwiger number and the Cartesian product of graphs. Graphs Combin. 24 (2008), 291-301. [pdf ]

  • J. Balogh and A. V. Kostochka, On 2-detour subgraphs of the hypercube, Graphs Combin. 24 (2008), 265-272. [pdf ]

  • A. V. Kostochka and M. Stiebitz, Partitions and edge colourings of multigraphs, Electron. J. Combin. 15 (2008), , Note 25, 4 pp [pdf ]

  • O.V. Borodin, A. O. Ivanova, A. V. Kostochka, and N. N. Sheikh, Minimax degrees of quasiplanar graphs with no short cycles other than triangles, Taiwanese J. Math. 12 (2008), 873--886. [pdf ]

  • O.V. Borodin, A. V. Kostochka, N. N. Sheikh, and G. Yu, Decomposing a planar graph with girth 9 into a forest and a matching, European J. Combin. 29 (2008), 1235--1241. [pdf ]

  • A. V. Kostochka and G. Yu, Ore-type degree conditions for a graph to be $H$H-linked, J. Graph Theory 58 (2008), 14--26. [pdf ]

  • A. V. Kostochka and N. Prince, K_{s,t}-minors in graphs with given average degree, Discrete Math. 308 (2008), 4435--4445. [pdf ]

  • A. V. Kostochka and G. Yu, Minimum degree conditions for H-linked graphs, Discrete Appl. Math. 156 (2008), 1542--1548. [pdf ]

  • A. V. Kostochka and X. Zhu, Adapted list coloring of graphs and hypergraphs, SIAM J. Discrete Math. 22 (2008), 398--408. [pdf ]

  • H. A. Kierstead and A. V. Kostochka, A Short Proof of the Hajnal-Szemeredi Theorem on Equitable Coloring, Combin. Probab. Comput. 17 (2008), 265--270. [pdf ]

  • H. A. Kierstead and A. V. Kostochka, An Ore-type Theorem on Equitable Coloring, J. Combin. Theory Ser. B 98 (2008), 226--234. [pdf ]

  • B. Bollobas, A. V. Kostochka, and K. Nakprasit, Packing d-degenerate graphs, J. Combin. Theory Ser. B 98 (2008), 85-94. [pdf ]

  • O.V. Borodin, A. O. Ivanova, A. V. Kostochka, and N. N. Sheikh, Minimax degrees of quasiplane graphs without 4-faces, Sib. Elektron. Mat. Izv. 4 (2007), 435-439.

  • P. Hamburger, P. Haxell, and A. V. Kostochka, On Directed Triangles in Digraphs, Electron. J. Combin. 14 (2007), Note 19, 9 pp. [pdf ]

  • A. V. Kostochka and G. Yu, An Ore-type analogue of the Sauer-Spencer Theorem, Graphs Combin. 23 (2007), 419-424. [pdf ]

  • N. Arizumi, P. Hamburger, and A. V. Kostochka, On k-detour subgraphs of hypercubes, J. Graph Theory 57 (2008), 55–64. [pdf ]

  • H. Kaul and A. V. Kostochka, Extremal Graphs for a Graph Packing Theorem of Sauer and Spencer, Combin. Probab. Comput. 16 (2007), 409–416. [pdf ]

  • N. Eaton, Z. Furedi, A. V. Kostochka, and J. Skokan, Tree representations of graphs. European J. Combin. 28 (2007), 1087–1098. [pdf ]

  • A. V. Kostochka and G. Yu, Ore-type graph packing problems, Combinatorics, Probability and Computing, 16 (2007), 167-169. [pdf ]

  • R. Gould, A. V. Kostochka, and G. Yu, On minimum degree implying that a graph is H-linked, SIAM J. of Discrete Mathematics, 20 (2006), 829-840. [pdf ]

  • A. V. Kostochka and V. Rödl, On Ramsey numbers of uniform hypergraphs with given maximum degree, Journal of Combinatorial Theory, Series A, 113}, (2006), 1555-1564. [pdf ]

  • K. Kawarabayshi, A. V. Kostochka, and G. Yu, On sufficient degree conditions for a graph to be k-linked, Combinatorics, Probability and Computing, 15 (2006), 685-694. [pdf ]

  • A. V. Kostochka, Color-critical graphs and hypergraphs with few edges: a survey, in: More sets, graphs and numbers, Bolyai Society Mathematical Studies, 15 (2006), Springer, 175-197. [pdf ]

  • N. Alon, G. Brightwell, H. A. Kierstead, A. V. Kostochka, and P. Winkler, Dominating Sets in k-Majority Tournaments, Journal of Combinatorial Theory, Series B, 96 (2006), 374-387. [pdf ]

  • A. V. Kostochka and D.B. West, Chvatal's Condition Cannot Hold for Both a Graph and Its Complement, Discussiones Mathematicae -- Graph Theory 26 (2006), 73-76. [pdf ]

  • A. V. Kostochka and N. Sheikh, On the Induced Ramsey Number IR(P_3,H), Algorithms and Combinatorics 26 (2006), 155-167, Springer. [pdf ]

  • O. V. Borodin, A. O. Ivanova, and A. V. Kostochka, Oriented $5$-coloring of vertices of sparse graphs, Discrete Analyzis and Operation Research, 13 (2006), No 1, 16-32 (in Russian).

  • M. Cropper, D. Greenwell, A.J.W. Hilton, and A. V. Kostochka, The domination number of cubic Hamiltonian graphs, AKCE International Journal of Graph Theory and Combinatorics, 2 (2005), 137-144. [pdf ]

  • Z. Furedi, A. V. Kostochka, R. Skrekovski, M. Stiebitz, and D. B. West, Nordhaus-Gaddum-type theorems for decomposition into many parts, Journal of Graph Theory, 50 (2005), 273-292. [pdf ]

  • A. V. Kostochka and B.Y. Stodolsky, On domination in connected cubic graphs, Discrete Mathematics 304 (2005), 45-50. [pdf ]

  • A. V. Kostochka and G. Yu, An extremal problem for H-linked graphs, Journal of Graph Theory, 50 (2005), 321-339. [pdf ]

  • A. V. Kostochka and K. Nakprasit, On equitable $\Delta$-coloring of graphs with low average degree, Theor. Comp. Science, 349 (2005), 82-91. [pdf ]

  • B. Bollobas, A. V. Kostochka, and K. Nakprasit, On two conjectures on packing of graphs, Combinatorics, Probability and Computing 14 (2005), 723-736. [pdf ]

  • A. V. Kostochka and J. Verstraete, Even cycles in hypergraphs, Journal of Combinatorial Theory, Series B, 94 (2005), 173-182. [pdf ]

  • A. V. Kostochka and D. R. Woodall, Irreducible hypergraphs for Hall-type conditions, and arc-minimal digraph expanders, European J. of Combinatorics, 26 (2005), 1119-1138. [pdf ]

  • A. V. Kostochka, K. Nakprasit, and S. Pemmaraju, On Equitable Coloring of $d$-Degenerate Graphs, SIAM J. of Combinatorics, 19 (2005), 83-95. [pdf ]

  • A. N. Glebov, A. V. Kostochka, and V. A. Tashkinov, Smaller planar triangle-free graphs that are not 3-list-colorable, Discrete Mathematics 290 (2005), 269-274. [pdf ]

  • T. Boehme and A. V. Kostochka, Disjoint K_r-minors in large graphs with given average degree, European J. of Combinatorics, 26 (2005), 289-292. [pdf ]

  • M. Albertson, A. V. Kostochka, and D. B. West, Precoloring extensions of Brooks' Theorem , SIAM J. of Combinatorics, 18 (2004), 542-553. [pdf ]

  • A. V. Kostochka and V. Rödl, On graphs with small Ramsey numbers, II Combinatorica, 24 (2004), 389-401. [pdf ]

  • P. N. Balister, A. V. Kostochka, Hao Li, and R. H. Schelp, Balanced Edge Colorings, Journal of Combinatorial Theory, Series B, 90 (2004), 3-20. [pdf ]

  • O. V. Borodin, S.-J. Kim, A. V. Kostochka, and D. B. West, Homomorphisms from sparse graphs with large girth Journal of Combinatorial Theory, Series B, 90 (2004), 147-159. [pdf ]

  • A. V. Kostochka, Coloring uniform hypergraphs with few colors Random Structures & Algorithms, 24 (2004), 1-10. [pdf ]

  • A. V. Kostochka and V.A. Tashkinov, Decomposing graphs into long paths, Order, 20 (2003), 239-253. [pdf ]

  • A. V. Kostochka, Coloring intersection graphs of geometric figures with given clique number,
    in: Towards a Theory of Geometric Graphs (J. Pach Ed.), AMS, Providence, Rhode Island, 127-138, 2003. [pdf ]

  • A. V. Kostochka and B. Sudakov, On Ramsey numbers of sparse graphs CPC 12 (2003), 627-641. [pdf ]

  • A. V. Kostochka and K. Nakprasit, Equitable colorings of $k$-degenerate graphs CPC 12 (2003), 53-60. [pdf ]

  • A. V. Kostochka, M. J. Pelsmajer, and D. B. West, A list analogue of equitable coloring Journal of Graph Theory, 44 (2003), 166-177. [pdf ]

  • Pemmaraju, S. V.; Nakprasit, K.; Kostochka, A. V. Equitable colorings with constant number of colors. Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), 458–459, ACM, New York, 2003.

  • A. V. Kostochka and M. Stiebitz, A new lower bound on the number of edges in colour-critical graphs, Journal of Combinatorial Theory, Series B, 87 (2003), 374-402. [pdf ]

  • R. Faudree, R. Gould, A. V. Kostochka, L. Lesniak, I. Schiermeyer, and A. Saito, Degree conditions for k-ordered hamiltonian graphs, Journal of Graph Theory}, 43 (2003), 199-210. [pdf ]

  • O. V. Borodin, A. V. Kostochka, A. Raspaud and E. Sopena, On the minimum number of colours in an acyclic k-strong coloring of maps on surfaces, Matematicheskie Zametki, 72, #1 (2002), 35-37 (in Russian). Translation in Math. Notes 72, no. 1-2, 31–33 [pdf ]

  • D. Fon-Der-Flaass, A. V. Kostochka, J. Nesetril, A. Raspaud, and E. Sopena, Nilpotent families of endomorphisms of (P(V)^+,U), Journal of Combinatorial Theory, Series B, 86 (2002), 100-108. [pdf ]

  • O. V. Borodin, D. Fon-Der-Flaass, A. V. Kostochka, A. Raspaud and E. Sopena, Acyclic list 7-coloring of planar graphs, Journal of Graph Theory, 40 (2002), 83-90. [pdf ]

  • A. V. Kostochka, Transversals in uniform hypergraphs with property (p,2), Combinatorica, 22 (2002), 275-285. [pdf ]

  • A. V. Kostochka and D. R. Woodall, Total choosability of multicircuits I, Journal of Graph Theory}, 40 (2002), 26-43. [pdf ]

  • A. V. Kostochka and D. R. Woodall, Total choosability of multicircuits II, Journal of Graph Theory}, 40 (2002), 44-67. [pdf ]

  • A. V. Kostochka, On a theorem by Erdos, Rubin, and Taylor [ps], Electronic J. of Comb. 9 (2002), # N9. [pdf ]

  • A. V. Kostochka and J. Nesetril, Colouring relatives of intervals on the plane, II: intervals and rays in two directions, European Journal of Combinatorics 23 (2002), 37-41. [pdf ]

  • A. V. Kostochka, Equitable colorings of outerplanar graphs, Discrete Mathematics 258 (2002), 373-377. [pdf ]

  • A. V. Kostochka and M. Stiebitz, A list version of Dirac's theorem on the number of edges in colour-critical graphs, J. Graph Theory 39 (2002), 165-167. [pdf ]

  • A. V. Kostochka and V. Rödl, On graphs with small Ramsey numbers, J. Graph Theory 37 (2001), no. 4, 198-204. [pdf ]

  • A. V. Kostochka and D. R. Woodall , Choosability conjectures and multicircuits, Discrete Mathematics 240 (2001), 123-143. [pdf ]

  • A. V. Kostochka and D. R. Woodall , Density conditions for panchromatic colourings of hypergraphs, Combinatorica 21 (2001), 515-541. [pdf ]

  • A. V. Kostochka and D. R. Woodall , Sparse sets in the complements of graphs with given girth, Discrete Mathematics 233 (2001), 163-174. [pdf ]

  • A. V. Kostochka, J. Nesetril, and P. Smolikova, Coloring and homomorphisms of degenerate and bounded degree graphs, Discrete Mathematics 233 (2001), 257-276. [pdf ]

  • P. Hell, A. V. Kostochka, A. Raspaud, and E. Sopena, On nice graphs, Discrete Mathematics 234 (2001), 39-51 . [pdf ]

  • O. V. Borodin, D. G. Fon-Der-Flaass, A. V. Kostochka, A. Raspaud, and E. Sopena, On deeply critical oriented graphs, J. of Combin. Theory (B) 81 (2001), 150-155 . [pdf ]

  • A. V. Kostochka, D. Mubayi, V. Rödl, and P. Tetali, On the chromatic number of set systems, Random Struct. & Algorithms 19 (2001), no. 2, 87-98. [pdf ]

  • M. Alzohairi, A. V. Kostochka, and I. Rival, The pagenumber of spherical lattices is unbounded, Arab Journal of Math. Sciences 7 (2001), 79-82. [pdf ]

  • A. V. Kostochka and M. Stiebitz, On the number of edges in colour-critical graphs and hypergraphs, Combinatorica 20 (2000), 521-530. [pdf ]

  • A. V. Kostochka and D. R. Woodall , On the number of edges in hypergraphs critical with respect to strong colourings, European Journal of Combinatorics 21 (2000), 249-255. [pdf ]

  • A. A. Ageev and A. V. Kostochka, Vertex set partitions preserving conservativeness, J. of Combin. Theory ( B) 80 (2000), 202-217. [pdf ]

  • A. V. Kostochka and I. G. Perepelitsa, Colouring triangle-free intersection graphs of boxes on the plane, Discrete Mathematics 220 (2000), 243-249. [pdf ]

  • B. Bollobas, A. V. Kostochka, and R. H. Schelp, Local and Mean Ramsey Numbers for Trees, J. of Combin. Theory ( B) 79 (2000), 100 - 103. [pdf ]

  • O. V. Borodin, A. V. Kostochka, A. Raspaud, and E. Sopena, Acyclic k-Strong Coloring of Maps on Surfaces, Mathematical Notes, 67 (2000), Nos. 1-2, 29-35. [pdf ]

  • O. V. Borodin, A. V. Kostochka, and B. Toft, Variable degeneracy: extensions of Brooks' and Gallai's theorems, Discrete Mathematics 214 (2000), 101-112. [pdf ]

  • G. Gutin, A. V. Kostochka, and B. Toft, On the Hajos number of graphs, Discrete Mathematics 213 (2000), 153-161. [pdf ]

  • A. V. Kostochka, Extremal problems on Delta-systems, in: ``Numbers, Information and Complexity'', Kluwer, 2000, 143-150. [pdf ]

  • W. A. Deuber and A. V. Kostochka, On degrees of vertices in paradoxical trees, Discrete Mathematics 212 (2000), 53-60. [pdf ]

  • A. V. Kostochka and D. B. West, Every outerplanar graph is the union of two interval graphs, Congressus Numerantium, 139 (1999), 5-8.

  • A. V. Kostochka, V. Rödl, and L. A. Talysheva, On systems of small sets with no large $\Delta$-subsystems, Combin. Prob. Comput. 8 (1999), no. 3, 265-268. [pdf ]

  • D. G. Fon-Der-Flaass, A. V. Kostochka, and D. R. Woodall , Transversals in uniform hypergraphs with property~$(7,2)$, Discrete Mathematics 207 (1999), 277-284 . [pdf ]

  • O. V. Borodin, A. V. Kostochka, and D. R. Woodall , Acyclic colourings of planar graphs with large girth, The Journal of the London Math. Society, 60 (1999), 344-352. [pdf ]

  • A. V. Kostochka and J. Nesetril, Properties of Descartes' construction of triangle-free graphs with high chromatic number, Combin. Prob. Comput. 8 (1999), 467-472. [pdf ]

  • O. V. Borodin, A. V. Kostochka, A. Raspaud, and E. Sopena, Acyclic colouring of 1-planar graphs, Diskretnyi Analiz i Issledovanie Operacii, Series 1, 6 (1999), no 4, 20-35.

  • N. Alon, P. Hamburger, and A. V. Kostochka, Regular honest graphs, isoperimetric numbers and bisection of weighted graphs, European Journal of Combinatorics 20 (1999), 469-481.[pdf ]

  • O. V. Borodin, A. V. Kostochka, J. Nesetril, A. Raspaud, and E. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Mathematics 206 (1999), 77-90 . [pdf ]

  • A. V. Kostochka, T. Luczak, G. Simonyi, and E. Sopena, On the minimum number of edges giving maximum oriented chromatic number, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 49 (1999), 179-182.

  • P. Hamburger, A. V. Kostochka, and A. Sidorenko, Hypercube subgraphs with local detours, J. Graph Theory 30 (1999), 101-111.[pdf ]

  • A. V. Kostochka and M. Stiebitz, Excess in colour-critical graphs, Bolyai Society Mathematical Studies 7 (1999), 87-99.

  • A. V. Kostochka and L. A. Talysheva, The dimension of interior levels of the Boolean lattice, II, Order 15 (1998), 377-383

  • A. Kostochka and V. Rödl, On large systems of sets with no large weak $\Delta$--subsystems, Combinatorica 18 (1998), 235-240. [pdf ]

  • A. Kostochka and V. Rödl, Partial Steiner systems and matchings in hypergraphs, Random Struct. & Algorithms 13 (1998), 335-347. [pdf ]

  • A. Kostochka, V. D. Mazurov, and L. Y. Saveliev, The number of $q$-ary words with restrictions on the length of the maximal run, Discrete Math. and its Appl. 8 (1998), No 2, 109-118. [pdf ]

  • A. V. Kostochka and M. Stiebitz, Colour-critical graphs with few edges, Discrete Mathematics 191 (1998), 125-137 . [pdf ]

  • O. V. Borodin, A. V. Kostochka, and D. R. Woodall , On kernel-perfect orientations of line graphs, Discrete Mathematics 191 (1998), 45-49 .[pdf ]

  • A. V. Kostochka and N. I. Glebov, On independent domination number of graphs with given minimum degree, Discrete Mathematics 188 (1998), 261-266. [pdf ]

  • O. V. Borodin, A. V. Kostochka, J. Nesetril, A. Raspaud, and E. Sopena, On universal graphs for planar oriented graphs of a given girth, Discrete Mathematics 188 (1998), 73-85 . [pdf ]

  • A. V. Kostochka, The dimension of neighboring levels of the Boolean lattice, Order 14 (1998), 267-268. [pdf ]

  • A. V. Kostochka and J. Nesetril, Coloring relatives of intervals on the plane, I: chromatic number versus girth, European Journal of Combinatorics 19 (1998), 103-110. [pdf ]

  • O. V. Borodin, A. V. Kostochka, and D. R. Woodall , Total colourings of planar graphs with large girth, European Journal of Combinatorics 19 (1998), 19-24. [pdf ]

  • O. V. Borodin, A. V. Kostochka, and D. R. Woodall , List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997), 184-204. [pdf ]

  • O. V. Borodin, A. V. Kostochka, and D. R. Woodall , Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997), 53-59. [pdf ]

  • T. Bohme, H. J. Broersma, F. Gobel, A. V. Kostochka, and M. Stiebitz, Spanning trees with pairwise nonadjacent endvertices. Discrete Math. 170 (1997), 219-222. [pdf ]

  • W. A. Deuber, P. Erdos, D. S. Gunderson, A. V. Kostochka, and A. G. Meyer, Intersection statements for systems of sets, J. Combin. Theory Ser. A 79 (1997), 118-132. [pdf ]

  • A. V. Kostochka and D. B. West, Total interval number for graphs with bounded degree, J. Graph Theory 25 (1997), 7984. [pdf ]

  • A. A. Ageev, A. V. Kostochka and Z. Szigeti, A characterization of Seymour graphs, J. Graph Theory 24 (1997), 357-364. [pdf ]

  • A. V. Kostochka, E. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997), 331-340. [pdf ]

  • A. V. Kostochka and J. Kratochvil, Covering and coloring polygon-circle graphs, Discrete Math. 163 (1997), 299-305. [pdf ]

  • E. Gyori, A. V. Kostochka, and T. Luczak, Graphs without short odd cycles are nearly bipartite, Discrete Math. 163 (1997), 279-284. [pdf ]

  • A. V. Kostochka, A bound of the cardinality of families not containing Delta-systems. The mathematics of Paul Erdos, II, 229-235, Algorithms Combin., 14, Springer, Berlin, 1997.

  • A. V. Kostochka, An intersection theorem for systems of sets, Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995), Random Structures Algorithms 9 (1996), 213-221. [pdf ]

  • W. A. Deuber, A. V. Kostochka, and H. Sachs, A very short proof of Dirac's theorem on the number of edges in chromatically critical graphs (Russian), Diskret. Anal. Issled. Oper. 3 (1996), no. 4, 28-34, 95.

  • A. V. Kostochka, M. Stiebitz, and B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Math. 162 (1996), 299-303. [pdf ]

  • A. V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math. 162 (1996), 199-214. [ pdf ]

  • A. V. Kostochka, The number of spanning trees in graphs with a given degree sequence, Proceedings of the Sixth International Seminar on Random Graphs and Probabilistic Methods in Combinatorics and Computer Science, ''Random Graphs '93'' (Poznan, 1993), Random Structures Algorithms 6 (1995), 269-274. [pdf ]

  • M. Axenovich, D. Fon-Der-Flaass, and A. V. Kostochka, On set systems without weak 3-Delta-subsystems, 14th British Combinatorial Conference (Keele, 1993), Discrete Math. 138 (1995), 57-62. [pdf ]

  • A. V. Kostochka, The 7/5-conjecture strengthens itself, J. Graph Theory 19 (1995), 65-67. [pdf ]

  • G. Brightwell, H. Kierstead, A. V. Kostochka, and W. T. Trotter, The dimension of suborders of the Boolean lattice, Order 11 (1994), 127-134. [pdf ]

  • A. V. Kostochka and L. S. Mel'nikov, On a lower bound of the isoperimetric number of cubic graphs, in: Probabilistic methods of Discrete Mathematics (Proceedings 3-rd Petrozavodsk Conference, May 12-15, 1992), V.~Kolchin et al Eds., VSP (Utrecht-Tokio), 251-265. [pdf ]

  • A. V. Kostochka, List edge chromatic number of graphs with large girth, Discrete Math. 101 (1992), 189-201. [pdf ]

  • A. V. Kostochka, The nonexistence of certain generalized friendship graphs. Combinatorics (Eger, 1987), 341-356, Colloq. Math. Soc. Janos Bolyai, 52, North-Holland, Amsterdam, 1988. [pdf ]

  • A. V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica 4 (1984), 307-316. [pdf ]

  • A. V. Kostochka, On the minimum of the Hadwiger number for graphs with given average degree, Metody Diskret. Analiz., 38 (1982), Novosibirsk, 37--58, in Russian; English translation: AMS Translations (2), 132 (1986), 15-32. [pdf]

  • A. V. Kostochka, Degree, girth and chromatic number, Combinatorics, Proceedings of the Fifth Hungarian Colloquium, Keszthely (1976), North-Holland, Amsterdam, 1978, 679--696. [pdf ]


    Reviews in MR can be viewed here.

    Reviews in Zentralblatt can be viewed here.

    Partially supported by an NSF research grant.

    Please send comments to: kostochk@math.uiuc.edu

    Last updated on March 15, 2024